Tasher $\quad f(x)=x^{2} \Rightarrow f^{\prime}(x)=2 x$

$$
\begin{aligned}
& f(x)=\frac{6}{x} \Rightarrow f^{\prime}(x)=-\frac{6}{x^{2}} \\
& f(x)=\sqrt{x} \Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
& f(x)=x \Rightarrow f^{\prime}(x)=1 \quad \text { b=w } \quad f(x)=m x \Rightarrow f^{\prime}(x)=m \\
& f(x)=1 \Rightarrow f^{\prime}(x)=0 \quad \text { bw. } . f(x)=m \Rightarrow f^{\prime}(x)=0
\end{aligned}
$$

nok millot $f(x)=x^{n}$ mit $n \geq 3$

$$
\begin{aligned}
& f(x)=x^{-n} \text { mit } n \leq 2 \\
& f(x)=\sin x \\
& f(x)=\cos x
\end{aligned}
$$

$f(x)=x^{4} \quad$ ges: Tangutanstigumg mi $\left(x_{0} ; x_{0}^{4}\right)$

$$
\begin{aligned}
& m=f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{h}-x_{0}^{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x_{0}^{x^{n}}+n x_{0}^{n-1} h+\ldots+h^{n}-x_{0}^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{n x_{0}^{h-1} h+\frac{n(n-1)}{2} x_{0}^{n-2} h^{2}+\ldots+h^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{K\left(n x_{0}^{h-1}+\frac{n(n-1)}{2} x_{0}^{n-2} h+\cdots+h^{n-1}\right)}{k} \\
& =\lim _{h \rightarrow 0}\left(h x_{0}^{n-1}+\frac{n(n-1)}{2} x_{0}^{n-2} h+\ldots+h^{n-1}\right)=n x_{0}^{n-1}
\end{aligned}
$$

Damit is $f^{\prime}: x \mapsto 4 x^{n-1}$ che Ableitungs fumbtion von $f: x \mapsto x^{n}$.

$$
f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2} \quad f(x)=x^{5} \Rightarrow f^{\prime}(x)=5 x^{4}
$$

Koeflizicutem

$$
\begin{aligned}
& (x+h)^{2}=x^{2}+2 x h+h^{2} \\
& (x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \\
& (x+h)^{4}=x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
& (x+h)^{5}=x^{5}+5 x^{4} h+10 x^{3} h^{2}+10 x^{2} h^{3}+5 x h^{4}+h^{4}
\end{aligned}
$$

Binomialkoeffizienten $\binom{n}{k}$

Pascalsche Dreieck

$$
(x+h)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} h^{k}
$$

Ablatungsogeln:
Fahtorreul: $k(x)=m \cdot f(x) \Rightarrow k^{\prime}(x)=m \cdot f^{\prime}(x) \quad$ fir $m=\mathbb{R} \backslash\{0\}$

$$
\text { da } \begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h}=\lim _{h \rightarrow 0} \frac{m \cdot f(x+h)-m \cdot f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m \cdot(f(x+h)-f(x))}{h}=m \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =m \cdot f^{\prime}(x)
\end{aligned}
$$

Beispicle: $f(x)=2,5 x^{2} \Rightarrow f^{\prime}(x)=2,5 \cdot 2 x=5 x$

$$
f(x)=\frac{1}{8} x^{4} \Rightarrow f^{\prime}(x)=\frac{1}{8} \cdot 4 x^{3}=\frac{1}{2} x^{3}
$$

Smmenregel $k(x)=f\left(x \mid+g(x) \Rightarrow k^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)\right.$

$$
\begin{aligned}
\text { da } b^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-(f(x)+g(x)))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h} \\
& =\underbrace{}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned} \underbrace{\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}}_{=f^{\prime}(x)}=f^{\prime}(x)+g^{\prime}(x) \quad .
$$

Beimpile: $f(x)=x^{2}+2 x \Rightarrow f^{\prime}(x)=2 x+2$

$$
\begin{aligned}
& f(x)=x+\frac{1}{x} \Rightarrow f^{\prime}(x)=1-\frac{1}{x^{2}} \\
& \begin{aligned}
f(x)=\frac{1}{1007} x^{2014}+\frac{1}{3} x^{3}-2 x^{2}+1 \Rightarrow f^{\prime}(x) & =\frac{2014}{1007} x^{2011}+\frac{1}{3} \cdot 3 x^{2}-2 \cdot 2 x+0 \\
& =2 x^{2013}+x^{2}-4 x
\end{aligned}
\end{aligned}
$$

S.38/9

$$
\begin{aligned}
& f(x)=0,25 x^{3}-3 x^{2}+2 x \\
& g(x)=-x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=g(x) \\
& 0,25 x^{3}-3 x^{2}+9 x=-x^{2}+5 x \\
& 0,25 x^{3}-2 x^{2}+4 x=0 \quad 1.4 \\
& x^{3}-8 x^{2}+16 x=0 \\
& x\left(x^{2}-8 x+16\right)=0 \\
& x \cdot(x-4)^{2}=0 \\
& x_{1}=0 \quad \text { (emifuhe Nollstclle) } \Rightarrow G_{p} m \alpha G_{g} \text { shmaidensich } \\
& x_{2}=4 \quad \text { (doppelte Nullistlle) } \Rightarrow \text { Gg midh g besingen sich }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=0,25 x^{3}-3 x^{2}+9 x \Rightarrow f^{\prime}(x)=0,25 \cdot 3 x^{2}-3 \cdot 2 x+9=0,75 x^{2}-6 x+9 \\
& g(x)=-x^{2}+5 x \quad \Rightarrow g^{\prime}(x)=-2 x+5
\end{aligned}
$$

Stugary do Tangent von 6p wi $(4 ; 4): f^{\prime}(4)=-3$
Stagang der Tany $\boldsymbol{\beta}^{\text {nt }}$ von $\operatorname{Gg}^{n}-(4 ; 4)$

$$
g^{\prime}(4)=-3
$$

$$
H A 5.38 / 11 a, b
$$

