a) $\int\left(-3 x^{3}+\frac{1}{12} x^{2}+8 x\right) d x=-\frac{3}{4} x^{4}+\frac{1}{36} x^{3}+4 x^{2}+C$.
b) $\int\left(e^{x}-e^{-x}\right) d x=e^{x}+e^{-x}+C$
c) $\int\left(\sin x+x^{2}\right) d x=-\cos x+\frac{x^{3}}{3}+C$
d) $\int\left(\frac{1}{x}+\frac{1}{x^{2}}\right) d x=\ln |x|-\frac{1}{x}$
e) $\int\left(\sqrt{x}+\frac{1}{4} \sqrt[6]{x}\right) d x=\int\left(x^{\frac{1}{2}}+\frac{1}{4} x^{\frac{1}{6}}\right) d x=$

$$
=\frac{2}{3} x^{\frac{3}{2}}+\frac{1}{4} \frac{6}{7} x^{\frac{1+6}{6}}+C=
$$

$$
=\frac{2}{3} x^{\frac{3}{2}}+\frac{3}{14} x^{\frac{7}{6}}+C
$$

$$
=\frac{2}{3} \cdot \sqrt{x^{3}}+\frac{3}{14} \cdot \sqrt[6]{x^{7}}
$$

$$
\begin{aligned}
& \int\left(\sin 2 t+x^{2}\right) d t= \\
& =-\frac{1}{2} \cos 2 t+x^{2} \cdot t+C \\
& \int e^{4 x} d x=\frac{1}{4} e^{4 x}+C \\
& \int 2^{x} d x=\int\left(e^{\ln 2}\right)^{x} d x=a=e^{\ln a} \\
& \int e^{\ln 2 \cdot x} d x=\frac{1}{\ln 2} e^{\ln 2 \cdot x}=\frac{1}{\ln \cdot} \cdot 2^{x}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{3}{x-5} \\
& D L, x \rightarrow \pm \infty \quad x=5 \\
& \lim _{h \rightarrow 0} f(5 \pm h)=\lim _{\lim _{0}} \frac{3}{5 \pm h-5}=\lim _{h \rightarrow 0} \frac{3}{ \pm h}= \pm \infty
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{2 e^{x}}{e^{x}+9} \\
& f^{\prime}(x)=\frac{\left(e^{x} \cdot 9\right) 2 e^{x}-2 e^{x} \cdot e^{x}}{\left(e^{x}+9\right)^{2}}= \\
&=\frac{18 e^{x}}{\left(e^{x}+9\right)^{2}} \quad \quad \quad \quad \quad e^{x} \cdot e^{x} \\
& e^{2 x} \neq e^{\left(x^{2}\right)}
\end{aligned}
$$

