

$$
f(x)=\frac{1}{3} x^{3}-2 x^{2}+4 x-2
$$

Vangute fir $x_{1}=-1$ in $T_{1}(-1 ; f(-1))$

$$
\left.\begin{array}{l}
f^{\prime}(x)=x^{2}-4 x+4 \\
f^{\prime}(-1)=9 \quad \Rightarrow m=9 \\
T_{1}\left(-1 ;-8 \frac{1}{3}\right)
\end{array} \quad-8 \frac{1}{3}=-9 x+t \Rightarrow t=\frac{2}{3}\right\} ? y=9 x+\frac{2}{3}
$$

Taugute fir $x_{2}=0,5$ in $T_{2}(0,5 ; f(0,5))$

$$
f^{\prime}(0,5)=2,25 \Rightarrow m=2 \frac{1}{4}
$$

$$
\begin{aligned}
T_{2}\left(0,5 ;-\frac{11}{24}\right) \Rightarrow & -\frac{11}{24}
\end{aligned}=\frac{9}{4} \cdot \frac{1}{2}+t .
$$

Tanginte $f ; x_{3}=2$ in $T_{3}\left(2 ; f(2): \quad y=2 \frac{1}{4} x-1 \frac{7}{12}\right.$

$$
f^{\prime}(2)=0 \Rightarrow y=f(2)=\frac{2}{3}
$$

HA S.5211 rechte Spalte nurf ${ }^{\prime}$

