Jst de 'Funstion f differnziediar, soist f'déAbleatungs funstion.
Ist f'anch difprenziediar, se kanm man f'anch ableiten und mons hat $f^{\prime \prime}$ als Ableitanjs functation von f !
z.B.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(x)=2 x \\
& f^{\prime \prime}(x)=2
\end{aligned}
$$

f"és the zwerte Ableitumg vonf.
aus derPhycek: Tumbtion $\mathcal{1} \geqslant$ Way-Zat-Funstion $s(t)$

$$
\begin{aligned}
& f^{\prime}=\text { Geshannidijkut-Zut-F̈mstion } r(t)=s(t) \\
& f^{\prime \prime} \hat{=} \text { Beshlemnignng-Zait-Funtrion } a(t)=\dot{v}(t)=\Delta(t)
\end{aligned}
$$

Iot di tunstion f'diedble'tungspunttion von f, so neunt man die Fumition f anch Stammonfuntion Inf.'
zB. $f(x)=x^{2}-5 x+2 \Rightarrow f^{\prime}(x)=2 x-5$
Staminfunstion vonf' Ablu'tangsfuntstion von f

$$
47 / 7
$$

G 7. Die erste Abbildung zeigt jeweils den Graphen G_{i} einer Funktion f. Genau eine der Abbildungen (1) bis (3) zeigt den Graphen einer Stammfunktion der Funktion f.
Finden Sie heraus, welche Abbildung dies ist, und geben Sie eine Begründung an.
a) $\quad y^{4}$

$$
\begin{equation*}
f(x)=2 \tag{a}
\end{equation*}
$$

\square
$y=x+2$
o 1 x

$$
\begin{aligned}
& f(x)=-2 x+2 \\
& f(0)=2=7(0)
\end{aligned}
$$

Stammimintion $F(x)=2 x$
, da $F^{\prime}(x)=2=f(x)$

Stamumun Stion $F(x)=-x^{2}+2 x+1$

$$
\text { , } d_{4} F=Y(x)=-2 x+2=f(x)
$$

$47 / 8$

G 8. Die erste Abbildung zeigt den Graphen G, einer ganzrationalen Funktion f zweiten Grads. Genau zwei der drei Abbildungen (1) bis (3) zeigen jeweils den Graphen einer Stammfunktion von f. Finden Sie heraus, welche beiden Abbildungen dies sind, und geben Sie eine Begründung an.

Slespray >0
$48 / 11$
G 11. Die Abbildung zeigt den Graphen G, einer gebrochenrationalen Funktion f sowie den Graphen G_{F} einer Stammfunktion von \uparrow

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { I Starmuph Ltion zu } f, \\
f \text { it Abléturgs punation zu } \mp
\end{array}\right\} F^{\prime}(x)=f(x) \\
& \text { F } \quad \text { f }
\end{aligned}
$$

S. $53 / 4$
a) $f^{\prime}(x)=x+4 x^{2} \quad \Rightarrow f(x)=\frac{1}{2} x^{2}+\frac{4}{3} x^{3}+1$

$$
f^{\prime}(x)=\frac{1}{2} \cdot 2 x+\frac{4}{3} \cdot 3 x^{2}=x+4 x^{2}
$$

b.) $f^{\prime}(x)=4 \quad \Rightarrow f(x)=4 x$
c) $f^{\prime}(x)=0 \quad \Rightarrow f(x)=1010$
d) $f^{\prime}(x)=2+0,5 x \Rightarrow f(x)=2 x+\frac{1}{4} x^{2}$

53|3 a) $\quad F(x)=x^{3}-\frac{1}{2} x+4 \quad \Rightarrow F^{\prime}(x)=3 x^{2}-\frac{1}{2}=f(x)$
b) $F(x)=(2 x-4)^{2}=4 x^{2}-16 x+16 \Rightarrow F^{\prime}(x)=8 x-16=8(x-2)=f(x)$
c) $F(x)=x^{3}+3 x^{2}+3 x+1 \Rightarrow F^{\prime}(x)=3 x^{2}+6 x+3=3\left(x^{2}+2 x+1\right)=3(x+1)^{2}=f(x)$

53/5 $\quad f(x)=2-x+3 x^{2} \Rightarrow f(x)=2 x-\frac{1}{2} x^{2}+x^{3}+C \quad \operatorname{mit} C \in \mathbb{R}$
a) $f \operatorname{mit}^{t} f(0)=0$

$$
C=0 \Rightarrow f(x)=2 x-\frac{1}{2} x^{2}+x^{3}
$$

Sammufunktionm snid micht
evidentid fest glegt. Konstante Summanden gehen Bemis Ablates valoren.
b) $f m_{1}{ }^{7} \quad f(2)=-3$

$$
\begin{aligned}
& -3=4-2+8+C \quad \Rightarrow f(x)=2 x-\frac{1}{2} x^{2}+x^{3}-13 \\
& \Rightarrow C=-13
\end{aligned}
$$

$$
H A S .49 / 13,14
$$

