Q 12-Mathematik-Kurs Heim: Unterschied zwischen den Versionen
Berny1 (Diskussion | Beiträge) (→Kür) |
Berny1 (Diskussion | Beiträge) (→Kür) |
||
Zeile 92: | Zeile 92: | ||
3. [[Datei:Horn1.jpg]]<br> | 3. [[Datei:Horn1.jpg]]<br> | ||
* Geben Sie zwei verschiedene Funktionstypen an mit Funktionsgleichung an, die von der breitesten Stelle an den Radius des Horns darstellen könnten. | * Geben Sie zwei verschiedene Funktionstypen an mit Funktionsgleichung an, die von der breitesten Stelle an den Radius des Horns darstellen könnten. | ||
− | * Der vordere Teil eines Musikinstrumentes genügt im dargestellten Intervall (Maßeinheit Dezimeter)auf dem angegebenen Intervall der angegebenen Funktionsgleichung. Welches Luftvolumen fasst es? | + | *Der vordere Teil eines Musikinstrumentes genügt im dargestellten Intervall (Maßeinheit Dezimeter)auf dem angegebenen Intervall der angegebenen Funktionsgleichung. Welches Luftvolumen fasst es? Für das Volumen gilt die obige Formel <math>V = \pi \cdot \int_a^b ( [f(x)]^2\, \mathrm{d}x</math>. |
}} | }} | ||
Zeile 114: | Zeile 114: | ||
1. Welche Bedingung muss eine Funktion erfüllen, die die Flasche als Rotationskörper erzeugen soll?<br> | 1. Welche Bedingung muss eine Funktion erfüllen, die die Flasche als Rotationskörper erzeugen soll?<br> | ||
2. Bestimmen Sie eine ganzrationale Funkton möglichst niedrigen Grades, die den Rotationskörper (ohne Zylinder erzeugt.<br> | 2. Bestimmen Sie eine ganzrationale Funkton möglichst niedrigen Grades, die den Rotationskörper (ohne Zylinder erzeugt.<br> | ||
− | 3. Für das Volumen gilt die obige Formel <math>V = \pi \cdot \int_a^b ( [f(x | + | 3. Für das Volumen gilt die obige Formel <math>V = \pi \cdot \int_a^b ( [f(x)]^2\, \mathrm{d}x</math> Berechnen Sie dieses.<br> |
4. Wie hoch muss der angesetzte Zylinder sein, damit das Fassungsvermögen genau 1 Liter beträgt und noch 10 ccm ^3 Platz für Korken und Luft sind?<br> | 4. Wie hoch muss der angesetzte Zylinder sein, damit das Fassungsvermögen genau 1 Liter beträgt und noch 10 ccm ^3 Platz für Korken und Luft sind?<br> | ||
5. Die Abbildung zeigt die die insgesamt 32 cm hohe Flasche erzeugende Funktion. Um wieviel Prozent m ehr Wein würde sich in der Flasche befinden? Begründen Sie ohne Rechnung welche Höhe ein Kegel haben müsste, der den Boden bildet und das zusätzliche Volumen ausgleicht. <br> | 5. Die Abbildung zeigt die die insgesamt 32 cm hohe Flasche erzeugende Funktion. Um wieviel Prozent m ehr Wein würde sich in der Flasche befinden? Begründen Sie ohne Rechnung welche Höhe ein Kegel haben müsste, der den Boden bildet und das zusätzliche Volumen ausgleicht. <br> |
Version vom 1. November 2012, 08:06 Uhr
Krümmungsverhalten und Wendepunkte
Stammfunktion und Unbestimmtes Integral
Aufgabe 4:
Da d/dx (ln |f(x)|= f´(x)/f(x)) gilt
- Fehler beim Parsen(Lexikalischer Fehler): V = \int f´(x)/f(x) \mathrm{d}x= ln|f(x)|
. Fällt eine Funktion mit Bruch nicht zerlegbar sein, so prüft man, ob die Voraussetzungen vorliegen oder durch Wahl eines geeigneten Koeffizienten hergestellt werden können. Test:
Aufgabe 5:
Bestimmtes Integral - Einführung
- (Summe der ersten ], Der kleine Gauß)
- (Summe der ersten )
- (Summe der ersten Kubikzahlen)
- (Summe der ersten Potenzen mit Exponenten 4)
- (Summe der ersten Potenzen mit Exponenten 5)
Allgemein kann die Summe der ersten i natürlichen Zahlen, jeweils zur k-ten Potenz erhoben, mit der Faulhabersche Formel
Die Integralfunktion
- Es ist Fehler beim Parsen(Lexikalischer Fehler): f(x) = \0.5 x^2-2
30px Aufgabe
Beschreibe wesentliche Eigenschaften der Funktion F(t) für folgende Werte von a:1,2,3,4,-1! |
Zusammenhang zwischen Stammfunktion und bestimmtem Integral - HDI Hauptsatz der Integral und Differentialrechnung
Anwendungen des Bestimmten Integrales - Flächenberechnungen - Weiteres
Pflicht
Kür
Zitiert aus Wikipedia:[1]
Berechnung des Volumens eines Rotationskörpers
Rotation um x-Achse
Für einen Rotationskörper, der durch Rotation der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die x-Achse und die beiden Geraden und begrenzt wird, um die x-Achse entsteht, lautet die Formel zur Volumenberechnung:
Rotation um y-Achse
Bei Rotation (um die y-Achse) der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die y-Achse und die beiden Geraden und begrenzt wird, muss man umformen zur Umkehrfunktion . Diese existiert, wenn f stetig und streng monoton ist. Falls nicht (wie z.B. im Bild rechts oben), lässt sich f vielleicht in Abschnitte zerlegen, in denen f jeweils stetig und streng monoton ist. Die zu diesen Abschnitten gehörenden Volumina müssen dann separat berechnet und addiert werden.
Wenn man hier substituiert, erhält man für das Volumen um die y-Achse
- .
Der Absolutwert von f' und die min/max Funktionen in den Integralgrenzen sichern ein positives Integral.
Bei Rotation (um die y-Achse) der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die x-Achse und die beiden Geraden und begrenzt wird, gilt die Formel:
30px Aufgabe
1. Zeichne einen Halbkreis mit Mittelpunkt (0;0) und Radius r, der eine Funktion darstellt. Gib einen Funktionsterm für die Funktion an und überprüfe die obige Formel durch entsprechende Integration
|
Berechnung der Mantelfläche eines Rotationskörpers
Für die Mantelfläche eines Rotationskörpers gilt:
Rotation um die x-Achse
Herleitung:[2]
30px Aufgabe
Überprüfe die Formel an einem Zylinder bzw. einem Kegel! |
Übungsaufgabe
30px Aufgabe
Handelsübliche 1-Liter- Weinflaschen bestehen aus einem zylindrischen Unterteil des Innendurchmessers 8 cm. Der oberste Teil wird durch einen zylindrischen Korken von 2 cm über. Dieser obere nicht zy lindrische Teil geht ist 20 cm hoch. 1. Welche Bedingung muss eine Funktion erfüllen, die die Flasche als Rotationskörper erzeugen soll? 6. Die nebenstehende Abbildung zeigt drei Funktionen t(h), die die Zeit eines Füllvorganges der Flasche mit kegelförmigem Boden in Abhängigkeit von der Füllhöhe h bei konstantem Zufluss (<math<20 cm^3/s, 40 cm^3/s und 80^3 ccm/s)</math> kennzeichnet.(Flasche mit kegelförmigem Boden.
|
1.
Bedingungen sind und wegen des horizontalen Überganges zusätzlich
dass die Ableitung an den Stellen 0 und zwanzig 0 ist.
2.
Für diese 4 Bedingungen muss man mindestens eine ganzrationale Funktion aufstellen.
mit der Ableitung
Also ergibt sich das Gleichungssystem
(1)
(2)
(3)
(4)
,
welches durch (1) und (2) auf zwei Gleichungen mit zwei Unbekannten reduziert wird und die
Lösungen
(1) und besitzt.
3.
Für weitere Untersuchungen:
30px Aufgabe
Entnehmen Sie ausgehend von der Höhe von 20 cm der abgebildeten Flasche wesentliche Werte für eine mathematische Modellierung der Flasche. Welchen Grad muss eine ganzrationale Funktion besitzen, um die Flasche als Rotationskörper im Intervall von 0 bis 20] zu erzeugen? Bestimmen Sie diese Funktion. |
Informationen
Länderübergreifendes Abitur
Musteraufgabe mit Zusatzinformationen
CAS-Abitur - traditionelles Abitur
Matheabi
unterscheidet sich nur in Geringfügigkeiten vom
CAS-Matheabi
CASIO-Class Pad
Die pdf-Datei kann im Adobe-Reader nach Stichworten durchsucht werden. Also nicht vor der Seitenzahl erschrecken°