2013-14 Q11-1M: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
({{Schrift grün|Kursthemen}})
(Differenzen- und Differentialquotient)
 
Zeile 55: Zeile 55:
 
[[Datei: Flasch4.jpg|miniatur||Lösung des Gleichungssystems mit dem Classpad]]
 
[[Datei: Flasch4.jpg|miniatur||Lösung des Gleichungssystems mit dem Classpad]]
 
'''2.'''<br>
 
'''2.'''<br>
 +
 +
 +
 
Für diese 4 Bedingungen muss man mindestens eine ganzrationale Funktion aufstellen.  
 
Für diese 4 Bedingungen muss man mindestens eine ganzrationale Funktion aufstellen.  
  
Zeile 85: Zeile 88:
 
Entnehmen Sie ausgehend von der Höhe von 20 cm der abgebildeten Flasche wesentliche Werte für eine mathematische Modellierung der Flasche. Welchen Grad muss eine ganzrationale Funktion besitzen, um die Flasche als Rotationskörper im Intervall von 0 bis 20] zu erzeugen? Bestimmen Sie diese Funktion.<br> Bestimmen Sie für einen Glasballon, den Sie zuhause besitzen eine erzeugende Funktion und stellen Sie den Glasballon mit dem Ergebnis in einer Präsentation vor. }}
 
Entnehmen Sie ausgehend von der Höhe von 20 cm der abgebildeten Flasche wesentliche Werte für eine mathematische Modellierung der Flasche. Welchen Grad muss eine ganzrationale Funktion besitzen, um die Flasche als Rotationskörper im Intervall von 0 bis 20] zu erzeugen? Bestimmen Sie diese Funktion.<br> Bestimmen Sie für einen Glasballon, den Sie zuhause besitzen eine erzeugende Funktion und stellen Sie den Glasballon mit dem Ergebnis in einer Präsentation vor. }}
 
[[File:Glasballon.JPG||400px]]
 
[[File:Glasballon.JPG||400px]]
 +
 +
={{Schrift_orange|<big>Koordinatengeometrie</big>}}=
 +
 +
==Das Skalarprodukt==
 +
 +
Beispiel Skalarprodukt </big>
 +
{{#ev:youtube|Q46b7yQ6o5o|400}}

Aktuelle Version vom 10. Dezember 2013, 10:18 Uhr

Inhaltsverzeichnis

Lösungen zu Übungsblättern

Übungsblatt Klausurvorbereitung: Übungsblatt

Kursthemen

Diese Mindmap zeigt, was wir in Analysis bisher behandelt haben.
Mathemindmap1.jpg
Ausnahme: Krümmungsverhalten und Wendepunkte In Analysis kommt noch das Newtonsche Nullstellenverfahren hinzu! Ab Mitte Dezember beginnen wir mit Vektorrechnung!

Gebrochenrationale Funktionen

Wiederholung rationalen Funktionen: rationale Funktionen

Asymptoten bei rationalen Funktionen

Symmetrie zum KS

Untersuchung von Termen mittels der h-Methode


1. Anwendung: Verhalten an Definitionslücken von gebrochen rationalen Funktionen

2. Im folgenden Kapitel

Differenzen- und Differentialquotient

Anwendungen der Differentialrechnung

Untersuchung von Funktionen auf ihre Eigenschaften
Bestimmung von Funktionen mit bestimmten Eigenschaften!

Aufgabe für die Herbstferien - Vortrag über die Cola-Flasche möglich - melden unter rsg-ws-geo@web.de

30px   Aufgabe
handelsübliche Weinflasche - 1 Liter

Handelsübliche 1-Liter- Weinflaschen bestehen aus einem zylindrischen Unterteil des Innendurchmessers 8 cm. Der oberste Teil wird durch einen zylindrischen Korken von 2 cm über. Dieser obere nicht zy lindrische Teil geht ist 20 cm hoch.

1. Welche Bedingung muss eine Funktion erfüllen, die die Flasche als Rotationskörper erzeugen soll?
2. Bestimmen Sie eine ganzrationale Funkton möglichst niedrigen Grades, die den Rotationskörper (ohne Zylinder erzeugt.

1.

Bedingungen sind  f(0)= 1;f(20)=4 und wegen des horizontalen Überganges zusätzlich

dass die Ableitung an den Stellen 0 und zwanzig 0 ist.

Lösung des Gleichungssystems mit dem Classpad

2.


Für diese 4 Bedingungen muss man mindestens eine ganzrationale Funktion aufstellen.

y =ax^3 + bx^2 + cx +d mit der Ableitung y =3ax^2 + 2bx + c
Also ergibt sich das Gleichungssystem

(1)1 = d
(2)0 = c
(3)4 = 8000 a + 400 b + 20 c + d
(4)0 = 1200 a +  40 b + c
,
welches durch (1) und (2) auf zwei Gleichungen mit zwei Unbekannten reduziert wird und die Lösungen

(1)a=-3/4000, b = 9/400, c=0 und  d = 1  besitzt.

Ergänzung
Visflasche1.JPG



Für weitere Untersuchungen:

Double Cola.jpg

30px   Aufgabe

Entnehmen Sie ausgehend von der Höhe von 20 cm der abgebildeten Flasche wesentliche Werte für eine mathematische Modellierung der Flasche. Welchen Grad muss eine ganzrationale Funktion besitzen, um die Flasche als Rotationskörper im Intervall von 0 bis 20] zu erzeugen? Bestimmen Sie diese Funktion.
Bestimmen Sie für einen Glasballon, den Sie zuhause besitzen eine erzeugende Funktion und stellen Sie den Glasballon mit dem Ergebnis in einer Präsentation vor.

Glasballon.JPG

Koordinatengeometrie

Das Skalarprodukt

Beispiel Skalarprodukt </big>