Q 12-Mathematik-Kurs Heim: Unterschied zwischen den Versionen
Berny1 (Diskussion | Beiträge) (→Kür) |
Berny1 (Diskussion | Beiträge) (→{{Schrift grün|Stammfunktion und Unbestimmtes Integral}}) |
||
Zeile 6: | Zeile 6: | ||
{{Lösung versteckt|Du sollst die Aufgaben zunächst versuchen selbst zu lösen. <br> | {{Lösung versteckt|Du sollst die Aufgaben zunächst versuchen selbst zu lösen. <br> | ||
− | Lösung Teil1:[[Datei:Loesung1.pdf]] }} | + | Lösung Teil1:[[Datei:Loesung1.pdf]] |
+ | }} | ||
+ | Aufgabe 4: | ||
+ | |||
+ | Da d/dx (ln |f(x)|= f´(x)/f(x)) gilt | ||
+ | :<math>V = \int f´(x)/f(x) \mathrm{d}x= ln|f(x)|</math>. Fällt eine Funktion mit Bruch nicht zerlegbar sein, so prüft man, ob die Voraussetzungen vorliegen oder durch Wahl eines geeigneten Koeffizienten hergestellt werden können. | ||
+ | Test: | ||
+ | :<math>V = \pi \cdot \int_{a}^{b} (f(x))^2 \mathrm{d}x</math> | ||
+ | |||
+ | Aufgabe 5: | ||
=Bestimmtes Integral - Einführung= | =Bestimmtes Integral - Einführung= |
Version vom 6. Oktober 2012, 09:22 Uhr
Krümmungsverhalten und Wendepunkte
Stammfunktion und Unbestimmtes Integral
Aufgabe 4:
Da d/dx (ln |f(x)|= f´(x)/f(x)) gilt
- Fehler beim Parsen(Lexikalischer Fehler): V = \int f´(x)/f(x) \mathrm{d}x= ln|f(x)|
. Fällt eine Funktion mit Bruch nicht zerlegbar sein, so prüft man, ob die Voraussetzungen vorliegen oder durch Wahl eines geeigneten Koeffizienten hergestellt werden können. Test:
Aufgabe 5:
Bestimmtes Integral - Einführung
- (Summe der ersten ], Der kleine Gauß)
- (Summe der ersten )
- (Summe der ersten Kubikzahlen)
- (Summe der ersten Potenzen mit Exponenten 4)
- (Summe der ersten Potenzen mit Exponenten 5)
Allgemein kann die Summe der ersten i natürlichen Zahlen, jeweils zur k-ten Potenz erhoben, mit der Faulhabersche Formel
Die Integralfunktion
Zusammenhang zwischen Stammfunktion und bestimmtem Integral - HDI Hauptsatz der Integral und Differentialrechnung
Anwendungen des Bestimmten Integrales - Flächenberechnungen - Weiteres
Pflicht
Kür
Zitiert aus Wikipedia:[1]
Berechnung des Volumens eines Rotationskörpers
Rotation um x-Achse
Für einen Rotationskörper, der durch Rotation der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die x-Achse und die beiden Geraden und begrenzt wird, um die x-Achse entsteht, lautet die Formel zur Volumenberechnung:
Rotation um y-Achse
Bei Rotation (um die y-Achse) der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die y-Achse und die beiden Geraden und begrenzt wird, muss man umformen zur Umkehrfunktion . Diese existiert, wenn f stetig und streng monoton ist. Falls nicht (wie z.B. im Bild rechts oben), lässt sich f vielleicht in Abschnitte zerlegen, in denen f jeweils stetig und streng monoton ist. Die zu diesen Abschnitten gehörenden Volumina müssen dann separat berechnet und addiert werden.
Wenn man hier substituiert, erhält man für das Volumen um die y-Achse
- .
Der Absolutwert von f' und die min/max Funktionen in den Integralgrenzen sichern ein positives Integral.
Bei Rotation (um die y-Achse) der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die x-Achse und die beiden Geraden und begrenzt wird, gilt die Formel:
30px Aufgabe
1. Zeichne einen Halbkreis mit Mittelpunkt (0;0) und Radius r, der eine Funktion darstellt. Gib einen Funktionsterm für die Funktion an und überprüfe die obige Formel durch entsprechende Integration 3. |
Informationen
Länderübergreifendes Abitur
Musteraufgabe mit Zusatzinformationen
CAS-Abitur - traditionelles Abitur
Matheabi
unterscheidet sich nur in Geringfügigkeiten vom
CAS-Matheabi
CASIO-Class Pad
Die pdf-Datei kann im Adobe-Reader nach Stichworten durchsucht werden. Also nicht vor der Seitenzahl erschrecken°