Q 12-Mathematik-Kurs Heim

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Krümmungsverhalten und Wendepunkte

Stammfunktion und Unbestimmtes Integral

Uebintegral12.pdf

Du sollst die Aufgaben zunächst versuchen selbst zu lösen.
Lösung Teil1:Loesung1.pdf

Aufgabe 4:

Da d/dx (ln |f(x)|= f´(x)/f(x)) gilt

Fehler beim Parsen(Lexikalischer Fehler): V = \int f´(x)/f(x) \mathrm{d}x= ln|f(x)|

. Fällt eine Funktion mit Bruch nicht zerlegbar sein, so prüft man, ob die Voraussetzungen vorliegen oder durch Wahl eines geeigneten Koeffizienten hergestellt werden können. Test:

Aufgabe 5:

Bestimmtes Integral - Einführung




Quelle: Wikipedia

 \sum_{i=1}^n i = \frac{n(n+1)}{2} (Summe der ersten n ], Der kleine Gauß)
\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} (Summe der ersten n )
\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4} (Summe der ersten n Kubikzahlen)
\sum_{i=1}^n i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} (Summe der ersten n Potenzen mit Exponenten 4)
\sum_{i=1}^n i^5 = \frac {1}{12} n^2 \left(n + 1\right)^2 \left(2n^2 + 2n -1\right) (Summe der ersten n Potenzen mit Exponenten 5)

Allgemein kann die Summe der ersten i natürlichen Zahlen, jeweils zur k-ten Potenz erhoben, mit der Faulhabersche Formel

Die Integralfunktion

Es ist Fehler beim Parsen(Lexikalischer Fehler): f(x) = \0.5 x^2-2
F(t) = \int_{a}^{t} f(x) \mathrm{d}x
30px   Aufgabe

{{{1}}}

Zusammenhang zwischen Stammfunktion und bestimmtem Integral - HDI Hauptsatz der Integral und Differentialrechnung

Anwendungen des Bestimmten Integrales - Flächenberechnungen - Weiteres

Pflicht

Kür

Zitiert aus Wikipedia:[1]

Rotationskoerper animation.gif

Berechnung des Volumens eines Rotationskörpers

Rotation um x-Achse

Für einen Rotationskörper, der durch Rotation der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die x-Achse und die beiden Geraden x=a und x=b begrenzt wird, um die x-Achse entsteht, lautet die Formel zur Volumenberechnung:

V = \pi \cdot \int_{a}^{b} (f(x))^2 \mathrm{d}x

Rotation um y-Achse

Bei Rotation (um die y-Achse) der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die y-Achse und die beiden Geraden y=f(a) und y=f(b) begrenzt wird, muss man y=f(x) umformen zur Umkehrfunktion x=f^{-1}(y). Diese existiert, wenn f stetig und streng monoton ist. Falls nicht (wie z.B. im Bild rechts oben), lässt sich f vielleicht in Abschnitte zerlegen, in denen f jeweils stetig und streng monoton ist. Die zu diesen Abschnitten gehörenden Volumina müssen dann separat berechnet und addiert werden.

V = \pi \cdot \int_{\min(f(a),f(b))}^{\max(f(a),f(b))} (f^{-1}(y))^2 \mathrm{d}y

Wenn man hier x = f^{-1}(y) substituiert, erhält man für das Volumen um die y-Achse

V = \pi \cdot \int_{\min(f(a),f(b))}^{\max(f(a),f(b))} x^2  \mathrm{d}y = \pi \cdot \int_a^b x^2 \cdot \left|f'(x)\right|\mathrm{d}x.

Der Absolutwert von f' und die min/max Funktionen in den Integralgrenzen sichern ein positives Integral.

Bei Rotation (um die y-Achse) der Fläche, die durch den Graphen der Funktion f im Intervall [a,b], die x-Achse und die beiden Geraden x=a und x=b begrenzt wird, gilt die Formel:

V =  2 \pi \cdot \int_a^b (x \cdot f(x)) \, \mathrm{d}x
30px   Aufgabe

1. Zeichne einen Halbkreis mit Mittelpunkt (0;0) und Radius r, der eine Funktion darstellt. Gib einen Funktionsterm für die Funktion an und überprüfe die obige Formel durch entsprechende Integration
2. Überprüfe die Volumenformel der Höhe des Grundkreisradius r und der Höhe h, indem Sie ein Dreieck mit um die y-Achse rotieren lassen.

Viennese horn.jpg

3. Horn1.jpg
Der vordere Teil eines Musikinstrumentes genügt im dargestellten Intervall (Maßeinheit Dezimeter)auf dem angegebenen Intervall der angegebenen Funktionsgleichung. Welches Luftvolummen fasst es?

Informationen

Länderübergreifendes Abitur

Musteraufgabe mit Zusatzinformationen

CAS-Abitur - traditionelles Abitur

Matheabi
unterscheidet sich nur in Geringfügigkeiten vom
CAS-Matheabi

CASIO-Class Pad

Die pdf-Datei kann im Adobe-Reader nach Stichworten durchsucht werden. Also nicht vor der Seitenzahl erschrecken°