2018-19-M-Hab: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Wiederholung)
(Gebrochen-rationale Funktionen)
Zeile 15: Zeile 15:
  
 
[[Gebrochen-rationale_Funktionen]]
 
[[Gebrochen-rationale_Funktionen]]
 +
 +
=Die Ableitungsfunktion=
 +
 +
Von der Sekantensteigung zur Tangentensteigung:<br>
 +
<ggb_applet width="418" height="454"  version="4.2" ggbBase64="UEsDBBQACAgIABF6SkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAARekpDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZbY/bNhL+nP6KgT4luLUt6t2BnWI3h6IBNk3QTYvDfbiAkmibXZlSJcprB/3xHZKSLL/E3XV9ub3FekmKQw7nmZlnKO/k+/UygxUrK56LqUWGtgVMJHnKxXxq1XI2iKzv33w3mbN8zuKSwiwvl1ROLW/oWNt1OBoSVy3mKe4SJbbrB2zgjx174Dk+G1AW2QM6s6nrOx7zImoBrCv+WuQ/0SWrCpqwu2TBlvQ2T6jUey6kLF6PRg8PD8NW+zAv56P5PB6uq9QCPLmoplbTeY3b7Sx6cLW4Y9tk9K/3t2b7AReVpCJhFiirav7muxeTBy7S/AEeeCoXaIsTWLBgfL5AM/0IzRwpoQJtLVgi+YpVuLQ31DbLZWFpMSrU/AvTg6wzx4KUr3jKyqnlDL1g7EUIUWSHPiGhb0FeciZkI0sanaN2t8mKswezreppjZEFMs+zmOKOBI2EPwAbxzQuwB+645ux1wwDMwx1Q+zmaaT+jNUATV/xiscZm1ozmlWIExezEn3UjSu5yZjW2jzY2kiuXJznX1DYtTEYDLD6eFfqE+DHUxOjXVNIT6ss65NKzfxWZ6fRI9HjNXo98DQKju3YcKUaYhoHmyAwU7Z5hqjqxjGNZxrfyHhmuWdEPSPjGRnP/XuwtiY6TwHV+Vs6t46Mjuh0/K848lT8GM89xk7i93SiKv2rPwca3VNm7mvcj51zFAbetzbRs8fhxY10neCKBJGOnmNKQ/tohpiWNO03wX4yaslv0hwIqoWSbZhCsmWljuiOwdccRsDHhA1CTD0fyBibULGiA8QHz8chiSBQbQiuIkIPXIhAyREXdMb6Ef7xQr1ZAD5upp6GtmZNcD3wXSA60T1AHECTBaLiuCjh++DjIqWeOGoLNwAvwJEbgYdnVDwRKrZ2cSGOUb0DLgFXLSYhOAEEDoSKa4inKCiI1OlxVwcCGwINPrINMo1hGVwSgasMwuwr8op3AC9YVrQ4aSi5KGq5A1+yTNuuzIvOjVo6zZP7mw7uZobRSvbFsEhtS6EpWjuV8sUkozHL8D5xp2IBYEUzRS9awywXEto4cMyzeUmLBU+qOyYlrqrgN7qit1Sy9Q8oXbW6tWpdwCesTjKecip+xUBRW6gNoavnqi609VwVd60lyfMyvdtUGD2w/jcrc3VtCYa27wVR6I31DyK4MVNu6AxD0k2MsWBXCVVh742H4/4PssPmq1NaM1t1ltE1q1r05yVP+/131U2epR3SRc6FfEsLWZf6aob8XCqTrsU8YxpZzfh4yUnu43x9ZyB1zV6fNgWObKM/nr/Ns7wEdRHx0ZB508am1TLqYJ2UrWVsLWG3PuJpN0/GjpbQbWxaLYVON0drDCWtlcRu1fBKsw1u3g9KHTFTa21BLbi8NSMMUJ7cN6YSs+CnehljtHURjAL/5OaCZy6zu2rIUTWbi6iZjPbCcHLPSsEyE2wCHV7ndWWiv4vgF5O6Yh+pXFyL9Gc2x7z9SBV9StRmRLVGk40s4UtcaJ43EFPl/l/w9OZpyuYla+Rppu/MxgF61u6H/sFjvdUPZb58J1afMLb2jjoZtfZMqqTkhYpgiJHP79k2SlNeUawGaX8dGl+hFYliJYROKlwtoLVc5KW+FmNqq5CAD/cyR5iRUDFuVVpnbIl3YpA6ekW9ZCVPOq8t9HUbz1g3ZnTuVh6DPP4NKWjP01swcfor8Q00KxYUe0PSRDHd4KH6SOnd3udpq7hRm6nbPSy50Nss6VpnKY2rPKslvt6gZ8T29cYcrOEovNiplydcQULV2eCjQHVmfN2DFxHjXzCWdgNjm2YSefMe3xgqzQWyyXrd+ZGnKRPdYanAWNIeQQYslLW24rSCMZMm3doCzdeE0wuExjHKReuiRHVqHw0KoByWiLUqJC/Xr2AK6/+8dF7pZbvunNVCR0Tnm5l12ne9nHmM8+xHOs8+jgd5JBjnoN8HMMmXSypSEPrO9FGRvLUt1NRWuBiba9k+uTabNEsPkNWVooPt+i9gPZ4SxDGFQbdNYbgYtiqzDtAlx9HVXFXpxGjyQrdfeumu7VX1budmYZ7ukdyp0J1aN03kviTwD1hcwcx0Xr2ydpE9DOZdyG/+95BvYXMa2LwLwbYbsLcY/Hvxeo2nJgqE/bClp8NW5VEHET2PDPBN+zJ0sMVv4O7FndPtdQbtst+FWVKZ+wVfFhlPuDyN8ocSa+U8FzQ7gveNwXt9jZecA8zjJ2AeH2Levr5+CwbuQd6muv1MIW9CfHMU8uQJkCfPBXK7QXxwwK7fDvJ3Qt16EYQ9tBODdnyA9Nun1MG3Z5FyEGmkVROb5nKMfKlCtn+FyDYYt18jZaBOA9wOlPjGkuGLIzFiyWdiBKnuuAj+Z/JXYBu1LZzdhufG0JO5n/iu9pVPzr7IH94Rdmys2FyNttn7mZxXpk4c9ZnUKQyNTN3FupzEa9Lhu+s9Y4X6auGD+FRSUal/De2+tD4eS/qcsHT36s8g+L/CMn5OWF62svwXsNylz7ssL/bLPT2gy/Q0Ge5/VZHuf1XhnvtVxQVIjpyLfh+0Uf9LHf1FbPMf2jd/AlBLBwijl8qdgwcAAFEeAABQSwECFAAUAAgICAARekpDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIABF6SkOjl8qdgwcAAFEeAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAGwgAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br><br>
 +
Mit dem Schieberegler für h kann man den x-Abstand h des Punktes B vom Punkt A ändern. Geht h gegen 0 so wird aus der Sekante [AB] die Tangente in A an den Graphen der Funktion f.
 +
 +
 +
Lernpfad: [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/index.htm Einführung in die Differentialrechnung]<br>
 +
 +
[http://www.brinkmann-du.de/mathe/gost/diff_01_02.htm Wissen:Ableitung, Differentialquotient ] <br>
 +
 +
[http://www.brinkmann-du.de/mathe/rbtest/applets/diff_01/index.html  Begriff:Differenzierbarkeit]<br>
 +
 +
Die Ableitungsfunktion f'
 +
 +
<ggb_applet width="587" height="472"  version="4.2" ggbBase64="UEsDBBQACAgIAJB0Z0UAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACQdGdFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbK1YbW/bNhD+nP6Kgz4lQ2yTEiXZhd0i7TCsQNIVSzcM+zCAlmibjd4mUX4p+uN3JCVZtpOsTZLEoUge73jP3T2kPH27TRNYi7KSeTZz6JA4ILIoj2W2nDm1WgzGzts3r6ZLkS/FvOSwyMuUq5nDhq6zX4e9IfX0YhnPHJeEZOF6ZMBClw3YmLHBeBLwgT8JJ0E0id05YQ7AtpKvs/wjT0VV8EjcRiuR8us84sroXClVvB6NNpvNsLU+zMvlaLmcD7dV7ADuPKtmTvPwGtUdLNp4RtwlhI7+urm26gcyqxTPIuGA9qqWb16dTTcyi/MNbGSsVjMnIIEDKyGXK6U76NNICxXoayEiJdeiwqW9rvFZpYVjxHim58/sEySdOw7Eci1jUc4cMvQ8Qg4+DuSlFJlqhGljdNSqm66l2Fi9+smYZGQSYgxkJeeJmDkLnlTolswWJUKKOypr7FZql4g5L9v+fkP0En9RQH4VWhf6aXHA+LnBJWXeZUjIpe83APQNO6DyPDFaCfgT+PYNXOISuNQNtY2LTRDYKWLHiGcb1zbMNr6VYXY5s6LMyjArw7xH/Gz6e0ebgQNPWz+9vp8U/dMfDPIlI6d+jnt+Uu3EN6B696bxQO+bmv3rhjXdwHZD01BiG9pMjvU/g1fwTI+8J3lEe1ZtPjxs9CRfWov+OPx+i+6z/Oy8dO/z0vUf8PKZ4LZGqd8zirbMn/mcmPR+yM8Hof0BiwF7Tu0/wWBIDsq+rXnb0qZ9DIYX29R01LLhtNkQVCst26S0Emmlt+hNDDkBBR+LNwiRS3ygE2xCXcQuUB+Yj106hkC3IXi6bhl4MAYtRz0wFOSP8R8zNR2Aj7r0YGiLGzwGvgfUEBcDRAEM+SEmrocSvg8+LtLWqTbrBcAC7HhjYLhBTXuhphYP12EfjbvgUfD0WhqCG0DgQqipkzLNqMFY7x2VuhAQCPRS5E7kTcuZuGIMnvYGq6DIK9mBuxJJ0UXF4CizolYH2EVp3D6q/Eg6zqO7d0dYC16p9hmF8MDan4v2ADs4Ns+mCZ+LBC8XtzoNANY80VVu9C/yTEGbAq4dW5a8WMmouhVK4aoKvvA1v+ZKbH9B6ardoDFtTvOpqKNExpJnf2KOaBVaIbSHu+Gu9nBnjFkrUZ6X8e2uwsSB7d+izJFwxmRI+j+I5q6Z0jedo6kq4jrl2WQ46f/gCbJrpvwjfdSaFuvONb4VVYvlspRx//lD9S5P4i4eRS4z9Z4Xqi7NRQ15stQ+XWXLRBhoDfPilSe6m+fbW4upZ3V93hXYI9b+fPk+T/ISsB5d30eBpp3b1sjojXVSxMgQI0HaIMm4m6cT10iYdm5bI4VRt1trHKWtl5S0ZmRlmAaV93PMpMzM2TpQZ1Jd2x7mp4zuGlepXfCxTueYbl0Co8DP0l737NX20Ay918zuRcxMR0d5OL0TZSYSm20ZBrzO68qmf5fCZ9O6Ep+4Wl1l8e9iiXX7iWvqVGjNihqLthhFJFNcaMcbiLkO/x+4ezsai2UpGnmemBu0DYCZJf3cPxk2qn4p8/RDtv6MuXW01emo9WdaRaUsdAbDHLn8TuyzNJYVx5Mg7q9D5yv0ItKshNApjasDvFarvDSXZKxtPGvgY74WGmakU8ocXdfbohSVft2wkQLUivyz1SR1vr2AGdL8SBPwT7D959y9wPbcPgyQtC+McZGIFC/ZoEwFLOrMbKML/cLc4HWIIZ9/QdI6So09+jj9QEEAT4oV13f8BsiE79CLPrRG200eN4DTFnCMp0EFaaiwyVYIYfNUNSULBaozFd9Lmn1hKaTKO3xhqEz1d4v0w68yjkXWWMPstEiYgKQpz2LIzBn9SROLsz8bONGwWJ9r1Y5cWSXN0hNgDTt1qF09A1WfWg7xve8G9rfFohIKtjNnoO+Bu4dgJ/fDTob3AE/vB96UTmVM4euvNYZPLvEYCT3sf+3RjgFFE/HBmWdHj6rv4fB8xrIUJwG6QnDofXHij8dJJ04XBv4/Yer5/ZLZT06gpEP9pjj2ukM0NMCaryYQ0AG+PY8nzHVJ2MwH4VPrAI/ffzO7pLIUj3ySyEiqx8Nwm+SFOAoCP0E/fRz9rE5FKaMO4NQoRFDqlhhOgRg9pZRM9eyLqR8l+mMc9TymOWbwmXPTEPj59vzq4hLSC+eQQU45+5Babp5ELa7+9uklklaVPBLHB/N9pHBfSr8AN4z6h6m5ATffk735D1BLBwiIsv9YhAYAANcTAABQSwECFAAUAAgICACQdGdFRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAJB0Z0WIsv9YhAYAANcTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAHAcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
Gegeben ist die Polynomfunktion <math> f: x \rightarrow \frac{1}{24}(x^4-16x^2)</math>.<math>A(x,y)</math> ist ein Punkt auf dem Graphen von <math>f</math>. In <math>A</math> ist die Tangente an den Graphen von <math>f</math>, diese hat die Steigung <math>m</math>. Trägt man über jeden x-Wert von <math>A</math> den Steigungswert <math>m</math> an, so erhält man den Punkt <math>M(x,m)</math>. Bewegt man nun den Punkt <math>A</math> auf dem Graphen von <math>f</math> so variiert auch der Punkt <math>M</math> und die Spur des Punktes <math>M</math> gibt den Graphen der Ableitungsfunktion <math>f'</math> wieder.
 +
 +
 +
[http://wiki.zum.de/Mathematik-digital/Zusammenhang_zwischen_Graph_einer_Funktion_und_Ableitung  Zusammenhang zwischen Funktion und 1. Ableitung]<br>
 +
 +
[http://www.matheprisma.uni-wuppertal.de/Module/Ableitung/Seite10.htm Überblick über die Ableitungsregeln mit Beispielen]<br>
 +
 +
[http://www.mathe-online.at/tests/diff1/poldiff.html multiple-choice]<br>
 +
[http://www.mathe-online.at/tests/diff1/ablerkennen.html Ableitungspuzzle]<br>
 +
 +
[http://www.frustfrei-lernen.de/mathematik/ableitung-produktregel-quotientenregel-ableitungsregel.html Produkt- und Quotientenregel]<br>
 +
[http://www.lehrer.uni-karlsruhe.de/~za275/archiv/m12/aufgaben/13_auf_quotientenregel.pdf Aufgaben zur Quotientenregel]<br>
 +
 +
[http://www.netalive.org/rationale-funktionen/chapters/2.3.10.html Musteraufgabe zur Kurvendiskussion]<br>
 +
 +
[[Ableitungsregeln]]
 +
 +
Wiederholungsaufgaben:  [http://raschweb.de/Q11-m-Diffquotient-Aufgaben-vollst.pdf Aufgaben zum Differentialquotienten], <br>
 +
[http://raschweb.de/Q11-m-Ableitungsregeln.pdf Aufgaben zu Produkt- und Quotientenregel]<br>
 +
[http://raschweb.de/Q11-m-Ableitung-Aufgabe_TIP-HOP-TR.pdf Polynomfunktionen - Ableitung, Monotonie, Extremwerte],
 +
 +
'''Das Newton-Verfahren'''
 +
 +
[http://www.mathematik.de/ger/fragenantworten/erstehilfe/nullstellenapproximation/newtonverfahren.html So geht es], [http://evlm.stuba.sk/~partner7/DBfiles/FACTs/Applets/newton.html Applet zur Veranschaulichung]

Version vom 18. Oktober 2018, 10:57 Uhr

Wiederholung

Grundlegende Fertigkeiten, die man zu Beginn der Oberstufe haben sollte

Wichtige Funktionstypen

Eigenschaften von Funktionen

Aufgaben: Binomische Formeln, Binomische Formeln 2
Übungsblatt zum Wiederholen
Geradengleichungen, Gerdengleichung erstellen,
Mitternachtsformel, Quadratische Gleichungen, Quadratische Gleichungen 2

Gebrochen-rationale Funktionen

Gebrochen-rationale_Funktionen

Die Ableitungsfunktion

Von der Sekantensteigung zur Tangentensteigung:



Mit dem Schieberegler für h kann man den x-Abstand h des Punktes B vom Punkt A ändern. Geht h gegen 0 so wird aus der Sekante [AB] die Tangente in A an den Graphen der Funktion f.


Lernpfad: Einführung in die Differentialrechnung

Wissen:Ableitung, Differentialquotient

Begriff:Differenzierbarkeit

Die Ableitungsfunktion f'

Gegeben ist die Polynomfunktion  f: x \rightarrow \frac{1}{24}(x^4-16x^2).A(x,y) ist ein Punkt auf dem Graphen von f. In A ist die Tangente an den Graphen von f, diese hat die Steigung m. Trägt man über jeden x-Wert von A den Steigungswert m an, so erhält man den Punkt M(x,m). Bewegt man nun den Punkt A auf dem Graphen von f so variiert auch der Punkt M und die Spur des Punktes M gibt den Graphen der Ableitungsfunktion f' wieder.


Zusammenhang zwischen Funktion und 1. Ableitung

Überblick über die Ableitungsregeln mit Beispielen

multiple-choice
Ableitungspuzzle

Produkt- und Quotientenregel
Aufgaben zur Quotientenregel

Musteraufgabe zur Kurvendiskussion

Ableitungsregeln

Wiederholungsaufgaben:  Aufgaben zum Differentialquotienten, 
Aufgaben zu Produkt- und Quotientenregel
Polynomfunktionen - Ableitung, Monotonie, Extremwerte,

Das Newton-Verfahren

So geht es, Applet zur Veranschaulichung