Abstands- und Winkelbestimmungen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 152 die obersten drei Beispiele zu
a) Abstand d(P,E) eines Punktes P zur Ebene E
b) Abstand d(g,E) einer zur Ebenen E echt parallelen Geraden
c) Abstand d(E1,E2) zweier echt parallelen Ebenen.

Die Lösungen sind im Buch ausführlich dargestellt.

Zur Berechnung des Abstands können Sie wegen der 1. Bemerkung auf der Seite zur Hessenschen Normalenform das Minuszeichen weglassen. Es ist egal, ob  \vec{n}\circ\vec{a} positiv oder negativ ist. Man berechnet den Abstand und falls d(P,E)<0 ist, nehmen Sie einfach den Betrag des erhaltenen Wertes.


Maehnrot.jpg
Merke:

Der (spitze oder rechte) Schnittwinkel \varphi zweier Geraden g: \vec{x} = \vec{a} + r \vec{u} und h: \vec{x} = \vec{b} + r \vec{v} ist gegeben durch  cos\varphi=\vert \frac{\vec{u}\circ\vec{v}}{\vert\vec{u}\vert\cdot\vert\vec{v}\vert}\vert


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 153 das erste Beispiel.


Maehnrot.jpg
Merke:

Der (spitze oder rechte) Schnittwinkel \varphi einer Geraden g: \vec{x} = \vec{a} + r \vec{u} und einer Ebene E: \vec{n} \circ(\vec{x} - \vec{a})=0 ist gegeben durch  sin\varphi=\vert \frac{\vec{u}\circ\vec{n}}{\vert\vec{u}\vert\cdot\vert\vec{n}\vert}\vert


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 153 das zweite Beispiel


Maehnrot.jpg
Merke:

Der (spitze oder rechte) Schnittwinkel \varphi zweier Ebenen E_1: \vec{n_1} \circ(\vec{x} - \vec{a_1})=0und einer Ebene E_2: \vec{n_2} \circ(\vec{x} - \vec{a_2})=0 ist gegeben durch  cos\varphi=\vert \frac{\vec{n_1}\circ\vec{n_2}}{\vert\vec{n_1}\vert\cdot\vert\vec{n_2}\vert}\vert


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 153 das dritte Beispiel.

Aufgaben zur Winkel- und Abstandsberechnungen