M10 Die Exponentialfunktion: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 41: Zeile 41:
 
<center>{{#ev:youtube |z86vsP3KaCY|350}}</center>
 
<center>{{#ev:youtube |z86vsP3KaCY|350}}</center>
  
{{Aufgaben-blau|3|2=Im Exponenten der Potenz einer Exponentialfunktion stehen reelle Zahlen. Dies bedeutet, dass im Exponenten auch Brüche, Dezimalzahlen, Wurzeln, ... stehen können. Um mit diesen Potenzen zu rechnen braucht man wieder die [https://de.serlo.org/mathe/1867/potenzgesetze Potenzgesetze]. <br>
+
{{Aufgaben-blau|3|2=Im Exponenten der Potenz einer Exponentialfunktion stehen reelle Zahlen. Dies bedeutet, dass im Exponenten auch Brüche, Dezimalzahlen, Wurzeln, ... stehen können. Um mit diesen Potenzen zu rechnen braucht man die Potenzgesetze. <br>
Zum Üben: Buch S. 94 / 1 }}
+
 
 +
Zum Wiederholen und Üben der Potenzgesetze: [https://de.serlo.org/mathe/1867/potenzgesetze Potenzgesetze], [https://de.serlo.org/mathe/23665/aufgaben-zu-den-potenzgesetzen Aufgaben 1], [https://studyflix.de/mathematik/potenzgesetze-aufgaben-2478 Aufgaben 2]
 +
 
 +
Aufgabe: Buch S. 94 / 1 }}
  
 
{{Lösung versteckt|1=a) <math>(-3)^2 = 9; (-2)^3 = -8; 3^{-2} = \frac{1}{9}; 2^{-3} = - \frac{1}{8}; \left ( \frac{1}{2} \right )^{-5}=(2^{-1})^{-5}=2^5=32; 10^{-1}=\frac{1}{10}; 10^{-2}=\frac{1}{100}; 0,1^{-3}=1000; </math><br>
 
{{Lösung versteckt|1=a) <math>(-3)^2 = 9; (-2)^3 = -8; 3^{-2} = \frac{1}{9}; 2^{-3} = - \frac{1}{8}; \left ( \frac{1}{2} \right )^{-5}=(2^{-1})^{-5}=2^5=32; 10^{-1}=\frac{1}{10}; 10^{-2}=\frac{1}{100}; 0,1^{-3}=1000; </math><br>

Version vom 26. Februar 2021, 16:42 Uhr

Bei den Beispielen zum exponentiellen Wachstum war der Term immer von der Form y = b \cdot a^x. Dabei war b der Anfangsbestand und a der Wachstumsfaktor. Diese Gleichung beschreibt einen neuen Funktionstyp. Bei diesen Funktionen steht die Variable x im Exponenten, daher heißen diese Funktionen Exponentialfunktionen.

Maehnrot.jpg
Merke:

Die Funktion f: R \rightarrow R, f(x) = b\cdot a^x (bc ∈ R+\{0}, a ∈ R+) heißt Exponentialfunktion zur Basis a.

Exponentialfunktion 1.jpg

Der Graph ist eine Exponentialkurve.


Bleistift 35fach.jpg   Aufgabe 1

Schaue dir den Video an

1. Wieso darf man für die Basis a nur positive reelle Zahlen verwenden?
2. Wie unterscheiden sich die Graphen, wenn a > 1 bzw. a < 1 ist?
3. Welchen Punkt haben alle Graphen der Exponentialfunktionen f:x \rightarrow a^x gemeinsam?
4. Was ist die Funktion f:x \rightarrow 1^x?

Aus den Beispielen kennst du, dass x irgendeine reelle Zahl, also eine negative oder positive Zahl oder 0 sein kann.
Wenn a=0 wäre, was ist dann 0^0 oder 0-1?
00 ist nicht definiert, ebenso wäre 0^{-1}=\frac{1}{0^1}=\frac{1}{0} ein nicht definierter Term.
Wenn a eine negative Zahl wäre, z.B. a = -2, was ist dann a^0,5?
Für a = -2 hätte man den Term (-2)^0,5=\sqrt {-2}, was in den reellen Zahlen nicht möglich ist, dies ist nicht definiert.

2. Wenn a > 1 ist, dann hat man eine monoton steigenden Graphen, wenn a < 1 ist, dann ist der Graph monoton fallend.

3. Alle Graphen haben den Punkt (0;1) gemeinsam.

4. Es ist 1^x=1, daher ist diese Funktion die konstante 1, also die Funktion, die jedem x fir Zahl 1 zuordnet.
Nuvola apps kig.png   Merke

Bei einem Funktionsgraphen geht man bei der Betrachtung immer in x-Richtung von links nach rechts, d.h. die x-Werte nehmen zu, sie werden größer.
Ein Graph ist streng monoton fallend, wenn mit zunehmenden x-Werten, die y-Werte kleiner werden.
Der Graph ist streng monoton steigend, wenn mit zunehmenden x-Werten, die y-Werte größer werden.

Exponentialfunktion 1.jpg

Beim grünen Graphen werden die y-Werte immer größer, wenn die x-Werte auch größer werden, der grüne Graph ist streng monoton steigend,
beim roten Graphen werden die y-Werte immer kleiner, wenn die x-Werte größer werden (man geht von links nach rechts), der rote Graph ist streng monoton fallend.


Bleistift 35fach.jpg   Aufgabe 2

Im folgenden Applet kannst du den Wert der Basis mit dem Schieberegler variieren.

Für welche Werte der Basis a der Exponentialfunktion f:x \rightarrow a^x ist der Graph strent monoton fallend bzw. streng monoton steigend?

Für 0 < a < 1 ist der Graph streng monoton fallend, für 1 < a ist er streng monton steigend.


Bleistift 35fach.jpg   Aufgabe 3

Im Exponenten der Potenz einer Exponentialfunktion stehen reelle Zahlen. Dies bedeutet, dass im Exponenten auch Brüche, Dezimalzahlen, Wurzeln, ... stehen können. Um mit diesen Potenzen zu rechnen braucht man die Potenzgesetze.

Zum Wiederholen und Üben der Potenzgesetze: Potenzgesetze, Aufgaben 1, Aufgaben 2

Aufgabe: Buch S. 94 / 1

a) (-3)^2 = 9; (-2)^3 = -8; 3^{-2} = \frac{1}{9}; 2^{-3} = - \frac{1}{8}; \left ( \frac{1}{2} \right )^{-5}=(2^{-1})^{-5}=2^5=32; 10^{-1}=\frac{1}{10}; 10^{-2}=\frac{1}{100}; 0,1^{-3}=1000;
0^3 = 0; 3^0 = 1; \left ( \frac{1}{2} \right )^0 = 1

b) 25^{\frac{1}{2}}=\sqrt 25 = 5; 25^{-\frac{1}{2}}=\frac{1}{5}=0,2; 9^{\frac{3}{2}}=27; 0,125^{\frac{1}{3}}=0,5; 0,125^{-\frac{2}{3}}=4; 4^{0,5}=\sqrt 4 = 2; 32^{0,2}=32^{\frac{1}{5}}=\sqrt [5] {32}=2;
16^{0,75}=16^{\frac{3}{4}}=2^3=8; 1024^{0,7}=1024^{frac{7}{10}}=2^7=128

c) Ein Bruch als Exponent ist z.B. \frac{1}{2}. Dies bedeutet, dass man aus der Basis die Wurzel zieht. Unter der Wurzel darf aber keine negative Zahl stehen, also darf die Basis nicht negativ sein. Die Basis ist deshalb positiv oder 0.

d) ... = 4
e) ...=9^{\frac{3}{2}}=27
f) ... = 0,25-0,5 = 0,5-1 = 2
g) ... = 36^{\frac{1}{2}}=6
h) ... = 5-1 = 0,2
i) ... 32-0,4 = 32^{-\frac{2}{5}}=2^{-2}=\frac{1}{4}=0,25
k) ... = 49^{\frac{1}{2}}=\sqrt {49}=7
l) ... = 4^{-\frac{5}{2}}=2^{-5}=\frac{1}{32}
m) ... = 27^{\frac{2}{3}}=3^2=9
n) ... = (9 - 4)-2 = 5-2 = 0,04
o) ... = \left ( \frac{1}{2}+\frac{1}{4} \right )^{-1} = \left ( \frac{3}{4} \right ) ^{-1} = \frac{4}{3}

p) ... = \left ( \sqrt 2 + \frac{1}{\sqrt 2} \right )^2 = \left ( \frac{2 + \sqrt 2}{2} \right )^2=\frac{4+4\sqrt 2 + 2}{4}=1,5 + \sqrt 2


Bleistift 35fach.jpg   Aufgabe 4

Buch S. 94 / 3

a) 94-3a.jpg

b) 94-3b.jpg

c) Die Funktionswerte f(x) werden, wenn man nach links geht immer kleiner und nähern sich 0 an. Wenn man nach rechts geht, werden die Funktionswerte f(x) immer größer.
Wenn man nach links geht, erhält man den nächsten Funktionswert f(x-1), indem man den Funktionswert f(x) durch 2 dividiert.
Wenn man nach rechts geht, erhält man den nächsten Funktionswert f(x+1), indem man den Funktionswert f(x) mit 2 multipliziert.

d) 94-3d.jpg

e) 94-3e.jpg