M11 Ableitung der Logarithmusfunktionen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 81: Zeile 81:
 
x-1 < 0 und x+1 < 0 ist für x < 1 bzw. x < -1, also x < -1 der Fall. Damit ist D=]<math>-\infty</math>;-1[<math>\cup</math>]1;<math>\infty</math>[.<br>
 
x-1 < 0 und x+1 < 0 ist für x < 1 bzw. x < -1, also x < -1 der Fall. Damit ist D=]<math>-\infty</math>;-1[<math>\cup</math>]1;<math>\infty</math>[.<br>
 
<math>f'(x) = \frac{1}{\frac{x-1}{x+1}} \cdot \frac{1\cdot(x+1)-(x-1)\cdot 1}{(x+1)^2}=\frac{2}{(x-1)(x+1)}</math>, <math>f'(-e)=\frac{2}{e^2-1}</math>  }}
 
<math>f'(x) = \frac{1}{\frac{x-1}{x+1}} \cdot \frac{1\cdot(x+1)-(x-1)\cdot 1}{(x+1)^2}=\frac{2}{(x-1)(x+1)}</math>, <math>f'(-e)=\frac{2}{e^2-1}</math>  }}
 +
 +
{{Aufgaben-blau|3|2=Gegeben ist die Funktion <math>f: x \rightarrow - ln(1-e^{-x})</math>.  }}

Version vom 15. April 2021, 09:06 Uhr


Bleistift 35fach.jpg   Aufgabe Wiederholung des Logarithmus

Zur Wiederholung des Logarithmus: M10_Der_Logarithmus

Maehnrot.jpg
Merke:

Die natürliche Logarithmusfunktion (ln-Funktion) ist die Umkehrfunktion der e-Funktion.

Die ln-Funktion f:x \to ln(x) hat folgende Eigenschaften:

  • D = R+, W = R
Ln-funktion.jpg
  • Der Graph hat genau eine Nullstelle (1;0), es ist ln(1) = 0.
  • ln(e) = 1
  • Der Graph der ln-Funktion ist streng monoton steigend.
  • Die negative y-Achse ist Asymptote.
  • Für x \to \infty ist ln(x) \to \infty.


Die Ableitung der ln-Funktion erhält man aus der Tatsache, dass die ln-Funktion Umkehrfunktion zur e-Funktion ist. Für f:x\to e^x ist f^{-1}:x \to ln(x) die Umkehrfunktion. Damit ist f \circ f^{-1}(x)=x. Für die Ableitung gilt hier (f \circ f^{-1'} = 1 und mittels der Kettenregel erhält man
f'(f^{-1}(x))\cdot f^{-1'}(x) = 1. Dies führt wieder zur Formel für die Ableitung der Umkehrfunktion f^{-1'}(x)= \frac{1}{f'(f^{-1}(x))}.
Die Ableitung der e-Funktion ist f '(x) = e^x.
Damit erhält man für die Umkehrfunktion f^{-1}:x \to ln(x) als Ableitung:
f'(x) = \frac{1}{f'(ln(x))}=\frac{1}{e^{ln(x)}}=\frac{1}{x}.
Also ist die Ableitung der natürlichen Logarithmusfunktion ( ln(x))' = \frac{1}{x}.

Im folgenden Applet kann man diese Aussage über die Ableitung der natürlichen Logarithmusfunktion \frac{1}{x} verifizieren. Über dem x-Wert des Punktes auf dem Graphen der ln-Funktion wird die Steigung der Tangente in dem Punkt an den Graphen angetragen. Dieser Punkt liegt auf der Hypberbel \frac{1}{x}.

Maehnrot.jpg
Merke:

Die Ableitung von ln(x) ist (ln(x))' = \frac{1}{x}


Bleistift 35fach.jpg   Aufgabe Wiederholung der Rechengesetze Logarithmus

Produkt: \log_b (x \cdot y) = \log_b x + \log_b y
Quotient: \log_b \frac xy = \log_b x - \log_b y
Potenz: \log_b \left(x^r\right) = r \log_b x.

Wurzel: \log_b \sqrt[n]{x} = \log_b \left(x^{\frac 1n}\right) = \frac 1n\log_b x.

Basisumrechnung: \log_b x = \frac{\log_a x}{\log_a b}

Und hier: viele Beispiele und Aufgaben und Aufgaben mit Lösungen.


Bleistift 35fach.jpg   Aufgabe 1

Leiten Sie ab
a) f(x) = ln(4x)
b) f(x) = ln(\sqrt{x^2 + 5})
c) f(x) = ln(cos(x)) für cos(x) > 0
d) f(x) = ln((sin x)^2 + (cos x)^2)

Mit der Kettenregel erhält man
a) Mit z = 4x ist f'(x) = f'(z)\cdot z' = \frac{1}{z}\cdot 4=\frac{4}{4x}=\frac{1}{x}
Oder mit den Rechengesetzen des Logarithmus ist f(x) = ln(4) + ln(x) und die Ableitung ist f'(x)=0 + \frac{1}{x} =\frac{1}{x}
b) Es ist ln(\sqrt{x^2 + 5})=ln((x^2+5)^{\frac{1}{2}})=\frac{1}{2}\cdot ln(x^2+5)
Damit ist mit z = x2+5 die Ableitung f'(x) = \frac{1}{2}\cdot f'(z)\cdot z'=\frac{1}{2}\cdot \frac{1}{x^2+5}\cdot 2x=\frac{x}{x^2+5}
Oder mit z=\sqrt{x^2+5} ist f'(x) = f'(z)\cdot z' = \frac{1}{z}\cdot \frac{2x}{2\sqrt{x^2+5}}=\frac{1}{\sqrt{x^2+5}}\cdot \frac{x}{\sqrt{x^2+5}} =\frac{x}{x^2+5}.
c) mit z = cos(x) ist f'(x) = \frac{1}{cos(x)}\cdot (-sin(x) = - \frac{sin(x)}{cos(x)}=-tan(x)

d) Es ist (sin x)2 + (cos x)2 = 1, also ist f(x) = ln(1) = 0 und f'(x) = 0.


Bleistift 35fach.jpg   Aufgabe 2

Bestimmen Sie zuerst für f die Definitionsmenge D. Bilden Sie dann f'(x) und berechnen Sie f'(x0).
a) f(x) = ln(x2), x 0 = 4
b) f(x) = ln(2x+3), x0 = 1
c) f(x) = \frac{x}{ln(x)}, x0 = 2
d) f(x) = x ln(x) - x , x0 = e
e) f(x) = ex ln(x), x0 = 1
f) f(x) = ln(\sqrt x), x0 = e-4
g) f(x) = ln(\frac{x-1}{x+1}), x0 = -e

a) D = R\{0}, f'(x) = 2x\cdot \frac{1}{x^2} = \frac{2}{x}, f(4)=\frac{1}{2}
Oder mit ln(x2) = 2ln(x) erhält man f'(x) = 2\cdot \frac{1}{x}.
b) 2x + 3 > 0 ergibt x > -1,5, also D = ]-1,5;\infty[, f'(x) = \frac{2}{2x+3}, f'(1)=0,4
c) D = R+, f'(x) = \frac{1\cdot ln(x) - x\cdot \frac{1}{x}}{(ln(x))^2}=\frac{ln(x) - 1}{(ln(x))^2}, f'(2)=\frac{ln(2)-1}{(ln(2))^2}
d) D = R+, f'(x)= 1\cdot ln(x) + x\cdot \frac{1}{x} -1=ln(x), f'(e) = 1
e) D = R+; f'(x) = e^{x\cdot ln(x)}\cdot (1\cdot ln(x) + x\cdot \frac{1}{x})=e^{x\cdot ln(x)}\cdot (1\cdot ln(x) + 1), f'(1) = 1.
f) D = R+, f'(x) = \frac{1}{\sqrt x}\cdot \frac{1}{2\sqrt x}=\frac{1}{2x}, f'(e^{-4})= \frac{e^4}{2} g) Hier muss man bei der Bestimmung der Definitionsmenge darauf achten, wo das Argument des Logarithmus positiv ist. Dies ist der Fall, wenn Zähler und Nenner beide positiv oder beide negativ sind.
x-1 > 0 und x+1 > 0 ist für x > 1 bzw. x > -1, also x > 1 der Fall.
x-1 < 0 und x+1 < 0 ist für x < 1 bzw. x < -1, also x < -1 der Fall. Damit ist D=]-\infty;-1[\cup]1;\infty[.

f'(x) = \frac{1}{\frac{x-1}{x+1}} \cdot \frac{1\cdot(x+1)-(x-1)\cdot 1}{(x+1)^2}=\frac{2}{(x-1)(x+1)}, f'(-e)=\frac{2}{e^2-1}


Bleistift 35fach.jpg   Aufgabe 3

Gegeben ist die Funktion f: x \rightarrow - ln(1-e^{-x}).