M11 Der Wahrscheinlichkeitsbegriff: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Ein wichtiger Begriff bei Berechnungen ist die '''Laplace-Wahrscheinlichkeit'''. [https://de.wikipedia.org/wiki/Pierre-Simon_Laplace Laplace] führte bei gleic…“)
 
Zeile 11: Zeile 11:
 
2. <math>P(\Omega)=1</math>
 
2. <math>P(\Omega)=1</math>
  
3. Sind zwei Ereignisse A und B unvereinbar <math>A \cap B=\lbrace \rbrace</math>, dann ist <math>P(A \cup B)=P(A)+P(B)</math>.
+
3. Sind zwei Ereignisse A und B unvereinbar <math>A \cap B=\lbrace \rbrace \rbrace</math>, dann ist <math>P(A \cup B)=P(A)+P(B)</math>.
  
 
{{Merke|1=Zwei Ereignisse Ereignisse A und B  heißen unvereinbar, wenn  <math>A \cap B=\lbrace \rbrace</math> ist. }}
 
{{Merke|1=Zwei Ereignisse Ereignisse A und B  heißen unvereinbar, wenn  <math>A \cap B=\lbrace \rbrace</math> ist. }}
Zeile 27: Zeile 27:
  
 
3. <math> P(E_1 \cup E_2) = P(E_1)+P(E_2)</math>, wenn <math>E_1\cap E_2 = \lbrace \rbrace</math>    }}
 
3. <math> P(E_1 \cup E_2) = P(E_1)+P(E_2)</math>, wenn <math>E_1\cap E_2 = \lbrace \rbrace</math>    }}
 +
 +
Man sieht, dass die Axiome von Kolmogorow sich sehr stark an die Eigenschaften der Laplace-Wahrscheinlichkeiten anlehnen. Nur geht es hier um die geforderten Eigenschaften einer Wahrscheinlichkeitsfunktion P, die hiermit jedem Ereignis eine Wahrscheinlichkeit P(E) zuordnet. Die Funktion P muss diese drei Axiome erfüllen, dann ist sie eine Wahrscheinlichkeitsfunktion.
 +
 +
Beispiele: 1. Werfen eines Laplace-Würfels<br>
 +
Die Wahrscheinlichkeiten beim Laplace-Würfel für die möglichen Ergebnisse 1, 2, 3, 4, 5, 6 sind jeweils <math>P(\lbrace 1  \rbrace)= P(\lbrace 2 \rbrace)=P(\lbrace 3 \rbrace)=P(\lbrace 4 \rbrace)=P(\lbrace 5 \rbrace)=P(\lbrace 6 \rbrace)=\frac{1}{6}</math><br>
 +
Die Axiome von Kolmogorow sind erfüllt:<br>
 +
1. <math>p(E) \ge 0</math><br>
 +
2. <math>P(\Omega)=P(\lbrace 1,2,3,4,5,6 \rbrace)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1</math><br>
 +
3. Die Ergebnisse sind unvereinbare Ereignisse, es gilt hier die Summenformel.<br>
 +
Also hat man eine Wahrscheinlichkeitsfunktion P, die jedem Ergebnis (Elementarereignis) die Wahrscheinlichkeit <math>\frac{1}{6}</math> zuordnet.
 +
 +
2. Werfen eines "gezinkten" Würfels<br>
 +
Man hat einen Würfel mit den Augenzahlen 1,2,3,4,5,6 und <math>P(\lbrace 1  \rbrace)= P(\lbrace 2 \rbrace)=P(\lbrace 3 \rbrace)=P(\lbrace 4 \rbrace)=P(\lbrace 5 \rbrace)=0,1</math> und <math>P(\lbrace 6 \rbrace)=0,5</math><br>
 +
Auch hier sind die Axiome von Kolmogorw erfüllt:<br>
 +
1. <math>P(E)\ge 0</math><br>
 +
2. <math> P(\Omega)=P(\lbrace 1,2,3,4,5,6 \rbrace)=0,1+0,1+0,1+0,1+0,1+0,5=1</math><br>
 +
3. Die Ergebnisse sind unvereinbare Ereignisse, es gilt hier die Summenformel.<br>
 +
 +
3. Werfen eines "exotischen Würfels"<br>
 +
Man hat einen Würfel mit den Augenzahlen 1,2,3,4,5,6 und <math>P(\lbrace 1  \rbrace)= P(\lbrace 2 \rbrace)=P(\lbrace 3 \rbrace)=P(\lbrace 4 \rbrace)=P(\lbrace 5 \rbrace)=0,15</math> und <math>P(\lbrace 6 \rbrace)=0,2</math><br>
 +
Hier ist das 2. Axiom von Kolmogorw nicht erfüllt:<br>
 +
2. <math> P(\Omega)=P(\lbrace 1,2,3,4,5,6 \rbrace)=0,15+0,15+0,15+0,15+0,15+0,2=0,95</math><br>
 +
P ist keine Wahrscheinlichkeitsfunktion. Diesen Würfel gibt es nicht!
 +
  
  

Version vom 25. April 2021, 16:37 Uhr

Ein wichtiger Begriff bei Berechnungen ist die Laplace-Wahrscheinlichkeit. Laplace führte bei gleichwahrscheinlichen Ergebnissen die Wahrscheinlichkeit eines Ereignisses E aals

       Anzahl der für E günstigen Ergebnisse
P(E)= ---------------------------------------
       Anzahl aller Ergebnisse


Als Eigenschaften der Laplace-Wahrscheinlichkeit erhält man:

1. P(E) \ge 0

2. P(\Omega)=1

3. Sind zwei Ereignisse A und B unvereinbar A \cap B=\lbrace \rbrace \rbrace, dann ist P(A \cup B)=P(A)+P(B).

Nuvola apps kig.png   Merke

Zwei Ereignisse Ereignisse A und B heißen unvereinbar, wenn A \cap B=\lbrace \rbrace ist.


Über 200 Jahre später definierte Kolmogorow Wahrscheinlichkeiten über seine Axiome zur Wahrscheinlichkeitsfunktion.

Maehnrot.jpg
Merke:

Axiomensystem von Kolmogorow

Eine Funktion P, die jeder Teilmenge E einer Ergebnismenge \Omega eine reelle Zahle P(E) zuordnet heißt Wahrscheinlichkeitsfunktion oder Wahrschlichkeitsverteilung, wenn die drei Bedingungen erfüllt sind:

1. P(E) \ge 0

2. P(\Omega) = 1

3.  P(E_1 \cup E_2) = P(E_1)+P(E_2), wenn E_1\cap E_2 = \lbrace \rbrace

Man sieht, dass die Axiome von Kolmogorow sich sehr stark an die Eigenschaften der Laplace-Wahrscheinlichkeiten anlehnen. Nur geht es hier um die geforderten Eigenschaften einer Wahrscheinlichkeitsfunktion P, die hiermit jedem Ereignis eine Wahrscheinlichkeit P(E) zuordnet. Die Funktion P muss diese drei Axiome erfüllen, dann ist sie eine Wahrscheinlichkeitsfunktion.

Beispiele: 1. Werfen eines Laplace-Würfels
Die Wahrscheinlichkeiten beim Laplace-Würfel für die möglichen Ergebnisse 1, 2, 3, 4, 5, 6 sind jeweils P(\lbrace 1  \rbrace)= P(\lbrace 2 \rbrace)=P(\lbrace 3 \rbrace)=P(\lbrace 4 \rbrace)=P(\lbrace 5 \rbrace)=P(\lbrace 6 \rbrace)=\frac{1}{6}
Die Axiome von Kolmogorow sind erfüllt:
1. p(E) \ge 0
2. P(\Omega)=P(\lbrace 1,2,3,4,5,6 \rbrace)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1
3. Die Ergebnisse sind unvereinbare Ereignisse, es gilt hier die Summenformel.
Also hat man eine Wahrscheinlichkeitsfunktion P, die jedem Ergebnis (Elementarereignis) die Wahrscheinlichkeit \frac{1}{6} zuordnet.

2. Werfen eines "gezinkten" Würfels
Man hat einen Würfel mit den Augenzahlen 1,2,3,4,5,6 und P(\lbrace 1  \rbrace)= P(\lbrace 2 \rbrace)=P(\lbrace 3 \rbrace)=P(\lbrace 4 \rbrace)=P(\lbrace 5 \rbrace)=0,1 und P(\lbrace 6 \rbrace)=0,5
Auch hier sind die Axiome von Kolmogorw erfüllt:
1. P(E)\ge 0
2.  P(\Omega)=P(\lbrace 1,2,3,4,5,6 \rbrace)=0,1+0,1+0,1+0,1+0,1+0,5=1
3. Die Ergebnisse sind unvereinbare Ereignisse, es gilt hier die Summenformel.

3. Werfen eines "exotischen Würfels"
Man hat einen Würfel mit den Augenzahlen 1,2,3,4,5,6 und P(\lbrace 1  \rbrace)= P(\lbrace 2 \rbrace)=P(\lbrace 3 \rbrace)=P(\lbrace 4 \rbrace)=P(\lbrace 5 \rbrace)=0,15 und P(\lbrace 6 \rbrace)=0,2
Hier ist das 2. Axiom von Kolmogorw nicht erfüllt:
2.  P(\Omega)=P(\lbrace 1,2,3,4,5,6 \rbrace)=0,15+0,15+0,15+0,15+0,15+0,2=0,95
P ist keine Wahrscheinlichkeitsfunktion. Diesen Würfel gibt es nicht!


Was macht man, wenn A und B nicht unvereinbar sind?

Das Ereignisdiagramm schaut dann so aus:
Schnittmenge.jpg
Hier sieht man, dass in der Schnittmenge A \cap B alle Elemente sind, die sowohl in A als auch in B vorkommen. In der Vereinigungsmenge A \cup B werden diese Elemente für P(A) und P(B) jeweils gezählt, sie werden doppelt gezählt. Um dies zu korrigieren, muss man die Elemente der Schnittmenge einmal abziehen.

Nuvola apps kig.png   Merke

Für Ereignisse A und B, die nicht unvereinbar sind (A\cap B\ne \lbrace \rbrace) gilt:

P(A\cup B)=P(A) + P(B) - P(A\cap B)