M11 Verkettung von Funktionen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Die Funktion <math>f:x \rightarrow \sqrt {x^2+1}</math> ist eine in ganz R definierte Funktion. <center>500px</center> Am Graph sie…“)
 
 
(6 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 
Die Funktion <math>f:x \rightarrow \sqrt {x^2+1}</math> ist eine in ganz R definierte Funktion.  
 
Die Funktion <math>f:x \rightarrow \sqrt {x^2+1}</math> ist eine in ganz R definierte Funktion.  
 
<center>[[Datei:Wurzel x^2+1.jpg|500px]]</center>
 
<center>[[Datei:Wurzel x^2+1.jpg|500px]]</center>
Am Graph sieht man, dass im Punkt (0;1) eine waagrechte Tangente y = 1 vorhanden ist. <br>
+
Am Graph sieht man, dass im Punkt (0;1) eine waagrechte Tangente y = 1 vorhanden ist. Bei x = -20 oder x = -10 ist die Steigung -1 und bei x = 10 und x = 20 ist die Steigung 1. <br>
  
Doch wie soll man <math>\sqrt {x^2+1}</math> ableitgen?<br>
+
Doch wie soll man <math>\sqrt {x^2+1}</math> ableiten?<br>
  
 
Dazu müssen wir die Verknüpfung zweier Funktionen um die '''Verkettung''' erweitern. Bisher kennen wir als Verknüpfung zweier Funktiongen f und g<br>
 
Dazu müssen wir die Verknüpfung zweier Funktionen um die '''Verkettung''' erweitern. Bisher kennen wir als Verknüpfung zweier Funktiongen f und g<br>
Zeile 12: Zeile 12:
  
 
Nun kommt noch die Verkettung <math> f \circ g</math> dazu.
 
Nun kommt noch die Verkettung <math> f \circ g</math> dazu.
 +
  
 
{{Merksatz|MERK=Bei der Verkettung (Hintereinanderausführung) <math> u \circ v</math>  der Funktionen <math>u</math> und <math> v</math> wird zuerst die Funktion <math>v</math> ausgeführt und danach die Funktion <math>u</math>. <br>
 
{{Merksatz|MERK=Bei der Verkettung (Hintereinanderausführung) <math> u \circ v</math>  der Funktionen <math>u</math> und <math> v</math> wird zuerst die Funktion <math>v</math> ausgeführt und danach die Funktion <math>u</math>. <br>
 
Es ist <math>u \circ v: x \rightarrow u(v(x))</math>. }}
 
Es ist <math>u \circ v: x \rightarrow u(v(x))</math>. }}
 +
  
 
Für unser Beispiel <math>f:x \rightarrow \sqrt {x^2+1}</math> betrachten wir die Funktionen <math>u:x\rightarrow \sqrt x</math> und <math>v:x\rightarrow x^2+1</math>. Es ist <math> u(x) = \sqrt x, v(x) = x^2+1</math>. <br>
 
Für unser Beispiel <math>f:x \rightarrow \sqrt {x^2+1}</math> betrachten wir die Funktionen <math>u:x\rightarrow \sqrt x</math> und <math>v:x\rightarrow x^2+1</math>. Es ist <math> u(x) = \sqrt x, v(x) = x^2+1</math>. <br>
 
Setzt man nun <math>v(x)</math> an die Stelle von <math>x</math> in der Funktion <math>u</math>, dann hat man <math>u \circ v (x) = u(v(x))=\sqrt {x^2+1}</math> und <math>f</math> ist die Verkettung <math>u \circ v</math> der Funktionen <math>u </math> und <math> v</math>, also <math> f = u\circ v</math>.
 
Setzt man nun <math>v(x)</math> an die Stelle von <math>x</math> in der Funktion <math>u</math>, dann hat man <math>u \circ v (x) = u(v(x))=\sqrt {x^2+1}</math> und <math>f</math> ist die Verkettung <math>u \circ v</math> der Funktionen <math>u </math> und <math> v</math>, also <math> f = u\circ v</math>.
 +
 +
 +
{{Merksatz|MERK=Bei der Verkettung <math> u \circ v</math> der Funktionen <math>u</math> und <math> v</math>, die durch  <math>u \circ v(x) = u(v(x))</math> gegeben ist, heißt <math>u</math> die '''äußere Funktion''' und <math>v</math> die '''innere Funktion'''.
 +
 +
Die innere Funktion ist das Argument der äußeren Funktion.}}
 +
 +
 +
Als neue Verknüpfung für die Funktionen <math>f</math> und <math>g</math> wurde die Verkettung  <math>f \circ g</math> eingeführt. Dies geht natürlich genauso, dann übernimmt <math>g</math> die Rolle der inneren Funktion und <math>f</math> die Rolle der äußeren Funktion. <br>
 +
Im folgenden Video wird auch die Schreibweise <math>f \circ g</math> dargestellt.
 +
<center>{{#ev:youtube |y7MmgAdibnY|350}}</center>
 +
 +
 +
Beispiele: 1. Für die Funktionen <math>u</math> mit <math>u(x)=x^2 + 5</math> und <math>v</math> mit <math>v(x)=3x -2</math> ist <br>
 +
* <math>u \circ v</math> durch <math>u(v(x))=(3x-2)^2 +5</math> gegeben. (In der Funktion u ersetzt man x durch den Term von v(x).)<br>
 +
* <math>v \circ u</math> durch <math>v(u(x))=3(x^2+5) -2</math>. (In der Funktion v ersetzt man x durch den Term von u(x).)<br>
 +
Natürlich vereinfacht man noch die Terme. Es ist dann <math>u(v(x))=(3x-2)^2 +5=9x^2-12x + 9</math> und <math>v(u(x))=3(x^2+5) -2=3x^2+13</math>.
 +
 +
Insbesondere sieht man, dass die Verkettung '''<u>nicht</u>''' kommutativ ist. <math> u \circ v(x) \ne v \circ u(x)</math>.
 +
 +
2. Für die Funktionen <math>u</math> mit <math>u(x)=2 + 3x</math> und <math>v</math> mit <math>v(x)=\frac{1}{x^2+1}</math> ist <br>
 +
* <math>u \circ v</math> durch <math>u(v(x))=2 + \frac{3}{x^2+1}</math> gegeben. (In der Funktion u ersetzt man x durch den Term von v(x).)<br>
 +
* <math>v \circ u</math> durch <math>v(u(x))=\frac{1}{(2+3x)^2 +1}</math>. (In der Funktion v ersetzt man x durch den Term von u(x).)<br>
 +
 +
3. Für die Funktionen <math>u</math> mit <math>u(x)=\sqrt x</math> und <math>v</math> mit <math>v(x)=\frac{3}{x-2}</math> ist <br>
 +
* <math>u \circ v</math> durch <math>u(v(x))=\sqrt {\frac{3}{x-2}}</math> gegeben. <br>
 +
* <math>v \circ u</math> durch <math>v(u(x))=\frac{3}{\sqrt x -2}</math>.
 +
 +
{{Aufgaben-blau|1|2=Buch S. 130 / 1 }}
 +
 +
{{Lösung versteckt|1=a) <math>f(x) = u(v(x))=\frac{1}{2x+4}</math> und <math>g(x)=v(u(x))=\frac{2}{x} +4</math>
 +
 +
b) <math>f(x) = u(v(x))=cos[(x+1)^2]</math> und <math>g(x)=v(u(x))=(cos x +1)^2</math>
 +
 +
c) <math>f(x) = u(v(x))=sin(2x^2)</math> und <math>g(x)=v(u(x))=[sin(2x)]^2</math>
 +
 +
d) <math>f(x) = u(v(x))=2^(x-1)</math> und <math>g(x)=v(u(x))=2^x -1</math>
 +
 +
e) <math>f(x) = u(v(x))=\frac{1}{(\sqrt{2x^2})^2}=\frac{1}{2x^2}</math> und <math>g(x)=v(u(x))=\sqrt {2 \left ( \frac{1}{x^2} \right )^2}=\frac{\sqrt 2}{x^2}</math>
 +
 +
f) <math>f(x) = u(v(x))=cos(\pi (x+2))</math> und <math>g(x)=v(u(x))=cos(\pi x) +2</math>
 +
 +
g) <math>f(x) = u(v(x))=2(2x^2)^2 =8 x^4= v(u(x))=g(x)</math>
 +
 +
h) <math>f(x) = u(v(x))=\sqrt {\sqrt{x^2+1}^2+1}= \sqrt{x^2+2}=g(x)</math>  }}
 +
 +
 +
Oftmals kann man auch eine Funktion <math>f</math> als Verkettung zweier Funktionen <math>u</math> und <math>v</math> schreiben.<br>
 +
1. Die Funktion <math>f</math> mit <math>f(x)=\sqrt {x^2+1}</math> ist die Verkettung <math>u \circ v</math> mit den Funktionen
 +
<math>u</math> mit <math> u(x) = \sqrt x</math> und <math>v</math> mit <math>v(x) = x^2+1</math>.
 +
 +
2. <math>f(x)=(1+x)^4</math> ist <math>f(x)= u \circ v(x)</math> mit <math> u(x) = x^4</math> und <math> v(x) = 1+x</math>.
 +
 +
3. <math>f(x)=\sqrt {2(x^2+7)}</math> ist <math>f(x)= u \circ v(x)</math> mit <br>
 +
* <math> u(x) = \sqrt x</math> und <math> v(x) = 2(x^2+7)</math> oder<br>
 +
* <math> u(x) = \sqrt {2x}</math> und <math> v(x) = x^2+7</math>.
 +
 +
<center>{{#ev:youtube |4pn02EvUZx0|350}}</center>
 +
 +
{{Aufgaben-blau|2|2=Buch S. 130 / 2 }}
 +
 +
{{Lösung versteckt|1=Es ist <math>f = u \circ v</math> mit <br>
 +
a) <math>u</math> mit <math> u(x) = x^4</math> und <math>v</math> mit <math>v(x) = 1-x</math><br>
 +
b) <math>u</math> mit <math> u(x) = log(x)</math> und <math>v</math> mit <math>v(x) = x^2+1</math><br>
 +
c) <math>u</math> mit <math> u(x) = x^2</math> und <math>v</math> mit <math>v(x) = \frac{x+1}{x-2}</math><br>
 +
d) <math>u</math> mit <math> u(x) = \sqrt x</math> und <math>v</math> mit <math>v(x) = x-1</math>  }}
 +
 +
 +
{{Aufgaben-blau|3|2=Man muss eventuell auf die Definitionsmenge der Verkettungsfunktion achten und diese neu bestimmen. <br>
 +
Buch S. 131 / 3 }}
 +
 +
{{Lösung versteckt|1=Man hat die Funktionen <math>u</math> mit <math> u(x) = \sqrt{x+1}</math> und <math>v</math> mit <math>v(x) = x^2-4</math>. Die Definitionsmenge für <math>u</math> ist D<sub>u</sub> = [-1;<math>\infty</math>[, die Definitionsmenge für <math>v</math> ist D<sub>v</sub> = R.<br>
 +
Die Funktion <math>f</math> mit <math>f(x)=u(v(x))=\sqrt {x^2-4 +1}=\sqrt {x^2-3}</math> hat als Definitionsmenge D<sub>f</sub> = <math>]-\infty;.\sqrt 3]\cup [\sqrt 3;\infty[</math>.<br>
 +
Die Funktion <math>g</math> mit <math>g(x)=v(u(x)=(\sqrt {x+1})^2-4=x+1-4=x-3</math> hat als Definitionsmenge D<sub>g</sub>=[-1;<math>\infty</math>[. Hierzu muss man beachten, dass man ja x zuerst in u einsetzt. Da darf man nur Zahlen, die größer oder gleich -1 sind einsetzen. Man erhält für u(x) eine Zahl, die größer oder gleich 0 ist. Diese Zahl u(x) wird dann in v eingesetzt. <br>
 +
Von den Zahlen -2, <math>-\sqrt 3</math>, -1, 0, 1, 2, 3 gehören zur <br>
 +
* Definitionsmenge von f die Zahlen -2, <math>-\sqrt 3</math>, 2, 3.  <br>
 +
* Definitionsmenge von G die Zahlen -1, 0, 1, 2, 3.    }}

Aktuelle Version vom 1. März 2021, 14:48 Uhr

Die Funktion f:x \rightarrow \sqrt {x^2+1} ist eine in ganz R definierte Funktion.

Wurzel x^2+1.jpg

Am Graph sieht man, dass im Punkt (0;1) eine waagrechte Tangente y = 1 vorhanden ist. Bei x = -20 oder x = -10 ist die Steigung -1 und bei x = 10 und x = 20 ist die Steigung 1.

Doch wie soll man \sqrt {x^2+1} ableiten?

Dazu müssen wir die Verknüpfung zweier Funktionen um die Verkettung erweitern. Bisher kennen wir als Verknüpfung zweier Funktiongen f und g

  • die Summe f + g
  • die Differenz f - g
  • die Multiplikation f · g und
  • die Division \frac{f}{g}

Nun kommt noch die Verkettung  f \circ g dazu.


Maehnrot.jpg
Merke:

Bei der Verkettung (Hintereinanderausführung)  u \circ v der Funktionen u und  v wird zuerst die Funktion v ausgeführt und danach die Funktion u.
Es ist u \circ v: x \rightarrow u(v(x)).


Für unser Beispiel f:x \rightarrow \sqrt {x^2+1} betrachten wir die Funktionen u:x\rightarrow \sqrt x und v:x\rightarrow x^2+1. Es ist  u(x) = \sqrt x, v(x) = x^2+1.
Setzt man nun v(x) an die Stelle von x in der Funktion u, dann hat man u \circ v (x) = u(v(x))=\sqrt {x^2+1} und f ist die Verkettung u \circ v der Funktionen u und  v, also  f = u\circ v.


Maehnrot.jpg
Merke:

Bei der Verkettung  u \circ v der Funktionen u und  v, die durch u \circ v(x) = u(v(x)) gegeben ist, heißt u die äußere Funktion und v die innere Funktion.

Die innere Funktion ist das Argument der äußeren Funktion.


Als neue Verknüpfung für die Funktionen f und g wurde die Verkettung f \circ g eingeführt. Dies geht natürlich genauso, dann übernimmt g die Rolle der inneren Funktion und f die Rolle der äußeren Funktion.
Im folgenden Video wird auch die Schreibweise f \circ g dargestellt.


Beispiele: 1. Für die Funktionen u mit u(x)=x^2 + 5 und v mit v(x)=3x -2 ist

  • u \circ v durch u(v(x))=(3x-2)^2 +5 gegeben. (In der Funktion u ersetzt man x durch den Term von v(x).)
  • v \circ u durch v(u(x))=3(x^2+5) -2. (In der Funktion v ersetzt man x durch den Term von u(x).)

Natürlich vereinfacht man noch die Terme. Es ist dann u(v(x))=(3x-2)^2 +5=9x^2-12x + 9 und v(u(x))=3(x^2+5) -2=3x^2+13.

Insbesondere sieht man, dass die Verkettung nicht kommutativ ist.  u \circ v(x) \ne v \circ u(x).

2. Für die Funktionen u mit u(x)=2 + 3x und v mit v(x)=\frac{1}{x^2+1} ist

  • u \circ v durch u(v(x))=2 + \frac{3}{x^2+1} gegeben. (In der Funktion u ersetzt man x durch den Term von v(x).)
  • v \circ u durch v(u(x))=\frac{1}{(2+3x)^2 +1}. (In der Funktion v ersetzt man x durch den Term von u(x).)

3. Für die Funktionen u mit u(x)=\sqrt x und v mit v(x)=\frac{3}{x-2} ist

  • u \circ v durch u(v(x))=\sqrt {\frac{3}{x-2}} gegeben.
  • v \circ u durch v(u(x))=\frac{3}{\sqrt x -2}.


Bleistift 35fach.jpg   Aufgabe 1

Buch S. 130 / 1

a) f(x) = u(v(x))=\frac{1}{2x+4} und g(x)=v(u(x))=\frac{2}{x} +4

b) f(x) = u(v(x))=cos[(x+1)^2] und g(x)=v(u(x))=(cos x +1)^2

c) f(x) = u(v(x))=sin(2x^2) und g(x)=v(u(x))=[sin(2x)]^2

d) f(x) = u(v(x))=2^(x-1) und g(x)=v(u(x))=2^x -1

e) f(x) = u(v(x))=\frac{1}{(\sqrt{2x^2})^2}=\frac{1}{2x^2} und g(x)=v(u(x))=\sqrt {2 \left ( \frac{1}{x^2} \right )^2}=\frac{\sqrt 2}{x^2}

f) f(x) = u(v(x))=cos(\pi (x+2)) und g(x)=v(u(x))=cos(\pi x) +2

g) f(x) = u(v(x))=2(2x^2)^2 =8 x^4= v(u(x))=g(x)

h) f(x) = u(v(x))=\sqrt {\sqrt{x^2+1}^2+1}= \sqrt{x^2+2}=g(x)


Oftmals kann man auch eine Funktion f als Verkettung zweier Funktionen u und v schreiben.
1. Die Funktion f mit f(x)=\sqrt {x^2+1} ist die Verkettung u \circ v mit den Funktionen u mit  u(x) = \sqrt x und v mit v(x) = x^2+1.

2. f(x)=(1+x)^4 ist f(x)= u \circ v(x) mit  u(x) = x^4 und  v(x) = 1+x.

3. f(x)=\sqrt {2(x^2+7)} ist f(x)= u \circ v(x) mit

  •  u(x) = \sqrt x und  v(x) = 2(x^2+7) oder
  •  u(x) = \sqrt {2x} und  v(x) = x^2+7.


Bleistift 35fach.jpg   Aufgabe 2

Buch S. 130 / 2

Es ist f = u \circ v mit
a) u mit  u(x) = x^4 und v mit v(x) = 1-x
b) u mit  u(x) = log(x) und v mit v(x) = x^2+1
c) u mit  u(x) = x^2 und v mit v(x) = \frac{x+1}{x-2}

d) u mit  u(x) = \sqrt x und v mit v(x) = x-1


Bleistift 35fach.jpg   Aufgabe 3

Man muss eventuell auf die Definitionsmenge der Verkettungsfunktion achten und diese neu bestimmen.
Buch S. 131 / 3

Man hat die Funktionen u mit  u(x) = \sqrt{x+1} und v mit v(x) = x^2-4. Die Definitionsmenge für u ist Du = [-1;\infty[, die Definitionsmenge für v ist Dv = R.
Die Funktion f mit f(x)=u(v(x))=\sqrt {x^2-4 +1}=\sqrt {x^2-3} hat als Definitionsmenge Df = ]-\infty;.\sqrt 3]\cup [\sqrt 3;\infty[.
Die Funktion g mit g(x)=v(u(x)=(\sqrt {x+1})^2-4=x+1-4=x-3 hat als Definitionsmenge Dg=[-1;\infty[. Hierzu muss man beachten, dass man ja x zuerst in u einsetzt. Da darf man nur Zahlen, die größer oder gleich -1 sind einsetzen. Man erhält für u(x) eine Zahl, die größer oder gleich 0 ist. Diese Zahl u(x) wird dann in v eingesetzt.
Von den Zahlen -2, -\sqrt 3, -1, 0, 1, 2, 3 gehören zur

  • Definitionsmenge von f die Zahlen -2, -\sqrt 3, 2, 3.
  • Definitionsmenge von G die Zahlen -1, 0, 1, 2, 3.