M9 Anwendungen und Aufgaben zu quadratischen Funktionen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Gemeinsame Punkte von Funktionsgraphen)
(Textaufgaben)
(5 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 16: Zeile 16:
 
d) <math> 4x^2 + x = 1,5x</math> liefert <math> 4x^2 - 0,5x = 0</math>. Man kann 4x ausklammern: <math> 4x(x - \frac{1}{8})=0</math>
 
d) <math> 4x^2 + x = 1,5x</math> liefert <math> 4x^2 - 0,5x = 0</math>. Man kann 4x ausklammern: <math> 4x(x - \frac{1}{8})=0</math>
 
hat die zwei Löungen <math>x_1 = 0, x_2 = \frac{1}{8}</math>. <br>
 
hat die zwei Löungen <math>x_1 = 0, x_2 = \frac{1}{8}</math>. <br>
<math>r(0;0), T(\frac{1}{8};{3}{16}</math> und die Streckenlänge <math>\bar {RT}=\sqrt {\frac{3}{16}^2 + \frac{1}{8}^2}=\frac{13}{256}  \approx 0,05</math>
+
<math>R(0;0), T(\frac{1}{8};\frac{3}{16}</math>) und die Streckenlänge <math>\bar {RT}=\sqrt {\frac{3}{16}^2 + \frac{1}{8}^2}=\frac{\sqrt {13}}{16}  \approx 0,225</math>
  
 
e) <math>\frac{1}{3}x^2 + \frac{2}{3}=2-x</math> liefert <math>\frac{1}{3}x^2 + x - \frac{4}{3}=0</math>. Die linke Seite lässt sich umformen in <math>\frac{1}{3}x^2 + x - \frac{4}{3}=\frac{1}{3}(x^2 + 3x -4)=\frac{1}{3}(x +4)8x-1)</math> und man löst die Gleichung <math>\frac{1}{3}(x +4)8x-1)=0</math> mit den zwei Lösungen <math>x_1=-4, x_2=1</math><br>
 
e) <math>\frac{1}{3}x^2 + \frac{2}{3}=2-x</math> liefert <math>\frac{1}{3}x^2 + x - \frac{4}{3}=0</math>. Die linke Seite lässt sich umformen in <math>\frac{1}{3}x^2 + x - \frac{4}{3}=\frac{1}{3}(x^2 + 3x -4)=\frac{1}{3}(x +4)8x-1)</math> und man löst die Gleichung <math>\frac{1}{3}(x +4)8x-1)=0</math> mit den zwei Lösungen <math>x_1=-4, x_2=1</math><br>
Zeile 52: Zeile 52:
 
R(-1;-1) und T(1;1)
 
R(-1;-1) und T(1;1)
  
b) <math>\frac{1}{x}=2x</math> --> <math>x^2 = \frac{1}{2}</math> und <math>x_1=-\frac{\sqrt 2}{2}, x_2=\frac{\sqrt}{2}</math><br>
+
b) <math>\frac{1}{x}=2x</math> --> <math>x^2 = \frac{1}{2}</math> und <math>x_1=-\frac{\sqrt 2}{2}, x_2=\frac{\sqrt 2}{2}</math><br>
 
<math>R(-\frac{\sqrt 2}{2};\sqrt 2), T(\frac{\sqrt 2}{2};\sqrt 2)</math>
 
<math>R(-\frac{\sqrt 2}{2};\sqrt 2), T(\frac{\sqrt 2}{2};\sqrt 2)</math>
  
Zeile 65: Zeile 65:
 
<math>R(\frac{1}{2};2)</math>
 
<math>R(\frac{1}{2};2)</math>
  
f) <math> \frac{2}x-1}= 1-x</math> --> <math> x^2 = -1</math> ist nicht lösbar, also kein Schnittpunkt.
+
f) <math> \frac{2}{x-1}= 1-x</math> --> <math> x^2 = -1</math> ist nicht lösbar, also kein Schnittpunkt.
  
 
g) <math> -\frac{3}{x} = \frac{1}{x+1}</math> --> <math>x=-\frac{3}{4}</math><br>
 
g) <math> -\frac{3}{x} = \frac{1}{x+1}</math> --> <math>x=-\frac{3}{4}</math><br>
 
<math>R(-\frac{3}{4};4)</math>
 
<math>R(-\frac{3}{4};4)</math>
  
h)  
+
h) <matsh>\frac{16}{x}=x</math> --> <math>x^2 = 16</math> und <math>x_1=-4, x_2=4</math><br>
 +
R(-4;-4) und T(4;4)
  
 +
i) <math> x^2 - 4 = x^2 -x</math> --> <math>x=4</math><br>
 +
R(4;12)
 +
 +
Im folgenden Applet kannst du dir die Graphen zu den Aufgaben und die Schnittpunkte anzeigen lassen. }}
 +
 +
<center><ggb_applet height="700" width="900" filename="101-8.ggb" /></center>
 +
 +
=Textaufgaben=
 +
 +
{{Aufgaben-blau|4|2=Buch S. 104 / 6 }}
 +
 +
{{Lösung versteckt|1=Man legt ein Koordinatensystem an die Wasseraustrittsdüse. Dann sind die beiden Nullstellen der Parabel 3,2m voneinander entfernt. Der Scheitel ist bei 1,6m und hat die Höhe 1,7m. Diese Werte kann man in die Scheitelform der Parabelgleichung einsetzen. <math>y = a(x-1,6)^2 + 1,7</math>. <br>
 +
Nun muss man noch a bestimmen. Die eine Nullstelle ist im Ursprung (0;0), die andere Nullstelle ist (3,2;0). Setzt man die Koordinaten der zweiten Nullstelle in die Gleichung ein, dann kann man a bestimmen. <br>
 +
<math>0=a(3,2 - 1,6)^2 + 1,7</math> --> <math> a = -\frac{1,7}{2,56} = -\frac{85}{128}</math> und <math>y= -\frac{85}{128}(x-1,6)^2 + 1,7 =  -\frac{85}{128} x^2 +  \frac{17}{8}x</math>
 +
 +
------
 +
Andere Lösung: Man legt das Koordinatensystem so, dass der Ursprung direkt unter dem Scheitel ist und die Wasseraustrittdüse und die Stelle, an der das Wasser wieder aufkommt auf der x-Achse liegen. Dann ist S(0;1,7) und die beiden Nullstellen (-1,6;0) und (1,6;0).<br>
 +
Damit erhält man als Gleichung für die Parabel <math>y = a(x+1,6)(x-1,6)</math> oder <math>y = a(x^2 -2,56)</math>. <br>
 +
Setzt man nun die Koordinaten des Scheitels in die Gleichung, dann erhält man <math>1,7 = a \cdot (-2,56)</math> und <math> a = -\frac{1,7}{2,56} = -\frac{85}{128}</math>. <br>
 +
Die Gleichung der Parabel ist dann <math> y = -\frac{85}{128}x^2 + 1,7</math> .<br>
 +
Dies ist nicht die Gleichung wie bei der ersten Lösung, aber wir haben ja auch das Koordinatensystem anders gelegt. }}
 +
 +
{{Aufgaben-blau|5|2=Buch S. 105 / 8 }}
 +
 +
{{Lösung versteckt|1=Aus der Zeichnung und dem Text kann man die Koordinaten der Punkte angeben: A(0;0), B(100;20), C(20,e). Der Ursprung des Koordinatensystems liegt in A. Aus der Zeichnung sieht man auch noch die zweite Nullstelle D(40;0).<br>
 +
a) Man hat die zwei Nullstellen, also ist <math>y=a\cdot x\cdot (x-40)</math>. <br>
 +
Setzt man die Koordinaten von B in die Gleichung, dann ist <math> 20 = a \cdot 100(100-40)</math> und <math>a=\frac{1}{300}</math>. <br>
 +
Die Gleichung der Parabel ist also <math>y=\frac{1}{300}x(x-40)</math> und wenn man den Term ausmultipliziert <math>y = \frac{1}{300}x^2 - \frac{2}{15}x</math>.<br>
 +
Die Scheitelform ist <math>y = \frac{1}{300}(x-20)^2 -\frac{4}{3}</math>.
 +
 +
-----
 +
Oder wenn man mit der Scheitelform beginnt: <math>y=a(x-d)^2 + e</math> <br>
 +
Vom Scheitel C(20;e) weiß man die x-Koordinate, also ist d = 20 und <math>y=a(x-20)^2+e</math>.<br>
 +
Setzt man die Koordinaten von A in die Gleichung: (1) <math>0 = a\cdot (-20)^2 +e</math><br>
 +
Setzt man die Koordinaten von B in die Gleichung: (2) <math>20 = a\cdot 80^2+e</math><br>
 +
Subtrahiert man nun Gleichung (1) von Gleichung (2), so hat man <math>20 = 6400a - 400a</math> und <math>a=\frac{1}{300}</math>.<br>
 +
Setzt man a in Gleichung (1), dann erhält man <math>0=\frac{1}{300}\cot 400 + e </math> und <math> e = -\frac{4}{3}</math>.<br>
 +
Die Scheitelform ist  <math>y = \frac{1}{300}(x-20)^2 -\frac{4}{3}</math>. <br>
 +
Durch Ausmultiplizieren und zussammenfassen erhält man <math>y = \frac{1}{300}x^2 - \frac{2}{15}x</math>.<br>
 +
In der letzten Gleichung kann man auf der rechten Seite <math>\frac{x}{300}</math> ausklammern und erhält  <math>y=\frac{1}{300}x(x-40)</math>.
 +
 +
b) Der Durchhang h(x) ergibt sich als Differenz (bei gleichem x) der y-Koordinate der Geraden [AB] und der y-Koordinate der Parabel. <br>
 +
Die Gerade [AB] hat die Gleichung <math>y = \frac{1}{5}x</math>.<br>
 +
Die Gleichung der Parabel ist  <math>y = \frac{1}{300}x^2 - \frac{2}{15}x</math>.<br>
 +
Damit ist <math>h(x)= \frac{1}{5}x - (\frac{1}{300}x^2 - \frac{2}{15}x)</math>.<br>
 +
Fasst man den Term auf der rechten Seite zusammen, dann erhält man <math>h(x)=-\frac{1}{300}x^2+\frac{1}{3}x</math>.<br>
 +
Man will nun den größten Wert des Durchhangs wissen. Der Funktionsterm für h(x) ist eine nach unten geöffnete Parabel, die ihren größten y-Wert im Scheitel hat, also muss man den Scheitel bestimmen.<br>
 +
Die x-Koordinate des Scheitels erhält man, wenn man die Mitte der zwei Nullstellen nimmt. Dafür klammert man auf der rechten Seite  <math>-\frac{x}{300}</math> aus und erhält <math> h(x)=-\frac{1}{300}x(x-100)</math>. <br>
 +
Hier kann die Nullstellen ablesen: <math>x_1=0, x_2=100</math> und genau in der Mitte ist die x-Koordinate des Scheitels <math>x_S=50</math>.<br>
 +
Setzt man diesen Wert in h(x) ein, dann erhält man den größten Durchhang <math>h(50)=8\frac{1}{3}</math>.
 
}}
 
}}
<center><ggb_applet height="700" width="900" filename="100-8.ggb" /></center>
+
 
 +
{{Aufgaben-blau|6|2= [[Datei:Nürnberg,_Burg,_Tiefer_Brunnen,_003.jpg|150px]]  Buch S. 107 / IV }}
 +
 
 +
{{Lösung versteckt|1=a) Für den freien Fall eines Körpers kennt man aus der Physik die Formel <math> h = \frac{1}{2}gt^2</math>. Dabei ist g die Erdbeschleunigung <math>g = 9,81\frac{m}{s^2}</math>. <br>
 +
Setzt man die gemessene Zeit t = 3,44s in die Gleichung für h, dann erhält man <math>h=\frac{1}{2}\cdot 9,81\cdot {m}{s^2}\cdot (3,44s)^2=58m</math>.
 +
 
 +
b) Sophie hat mit ihrem Einwand natürlich Recht. Die gemessene Zeit setzt sich zusammen aus der <br>
 +
* Fallzeit <math>t_{Stein}</math>des Steins und<br>
 +
* der Zeit <math>t_{Schall}</math>, die der Schall vom Boden bis zum Standort <br>
 +
braucht. Es ist <math>3,44s = t_{Stein} + t_{Schall}</math>.<br>
 +
Der Stein und der Schall legen beide jeweils den Weg <math>h</math> zurück. Dabei macht der Stein eine Bewegung mit konstanter Beschleunigung und der Schall eine Bewegung mit konstanter Geschwindigkeit.<br>
 +
Der Stein wird mit konstanter Beschleunigung beschleunigt, dabei ist der zurückgelegte Weg <math>h = \frac{1}{2}gt_{Stein}^2</math>.<br>
 +
Der Schall macht eine Bewegung mit konstanter Geschwindigkeit, dabei ist der zurückgelegte Weg <math>h=c_{Schall}t</math>, wobei <math>c_{Schall} \approx 340\frac{m}{s}</math> ist.<br>
 +
Da in beiden Fällen der gleiche Weg <math>h</math> zurückgelegt wird, kann man die beiden Gleichungen gleich setzen. <br>
 +
<math>\frac{1}{2}gt_{Stein}^2=c_{Schall}t</math><br>
 +
Dies ist eine Gleichung mit zwei Unbekannten <math>t_{Stein}</math> und <math>t_{Schall}</math>.<br>
 +
Von Sophia wissen wir, dass <math>3,44s = t_{Stein} + t_{Schall}</math> ist. Das ist die zweite Gleichung.<br>
 +
Man hat ein Gleichungssystem mit zwei Unbekannten:<br>
 +
(1) <math>\frac{1}{2}gt_{Stein}^2=c_{Schall}t</math><br>
 +
(2) <math>3,44s = t_{Stein} + t_{Schall}</math><br>
 +
Löst man (2) nach <math>t_{Schall}</math> auf und setzt den erhaltenenen Term in (1) ein, dann hat man<br>
 +
<math>\frac{1}{2}gt_{Stein}^2=c_{Schall}(3,44s - t_{Stein})</math><br>
 +
Man erhält eine quadratische Gleichung für <math>t_{Stein}</math>: <math>\frac{1}{2}gt_{Stein}^2+c_{Schall}t_{Stein}-c_{Schall }\cdot 3,44s=0</math><br>
 +
Mit der Lösungsformel erhält man <math>t_{Stein 1,2}=\frac{-c_{Schall} \pm \sqrt {(c_{Schall})^2+4\cdot \frac{1}{2}g\cdot c_{Schall}\cdot 3,44s}}{2\cdot \frac{1}{2}g}= \frac{-340\frac{m}{s} \pm \sqrt {(340\frac{m}{s})^2+4\cdot \frac{1}{2}\cdot 9,81 \frac{m}{s^2} \cdot 340\frac{m}{s}\cdot 3,44s}}  {2\cdot \frac{1}{2}9,81\frac{m}{s^2}}</math><br>
 +
Das -Zeichen vor der Wurzel kann man weglassen, da sonst im Zähler etwas Negatives stehen würde und damit die Zeit negativ wäre. Dies kann nicht sein. Also kann man gleich nur mit dem + rechnen. Setzt man die Werte ein, dann erhält man <matsh>t_{Stein}=3,284s<br> und für den Schall <math>t_{Schall}=0,156s</math>.<br>
 +
Damit erhält man für die Tiefe des Brunnens <br>
 +
* bei der Bewegung mit konstanter Beschleunigung des Steins <math>h=\frac{1}{2}\cdot 9,81\frac{m}{s^2}\cdot (3,284s)^2=52,9m</math><br>
 +
* bei der Bewegung des Schalls mit konstanter Geschwindigkeit <math>h=340\ frac{m}{s}\cdot 0,156s=53,0m</math>. }}

Version vom 3. März 2021, 12:39 Uhr

Gemeinsame Punkte von Funktionsgraphen

Nuvola apps kig.png   Merke

Gemeinsame Punkte von Funktionsgraphen findet man, indem man die Funktionsterme gleichsetzt und die Gleichung nach x auflöst.


Bleistift 35fach.jpg   Aufgabe 1

Gemeinsame Punkte einer Parabel mit einer Geraden: Buch S. 100 / 4

a) x^2 = -x+2 liefert eine quadratische Gleichung x^2 + x -2 = 0. Die Gleichung lässt sich in Linearfaktoren zerlegen (x+2)(x-1)=0 mit den zwei Lösungen x_1 = -2, x_2 = 1.
Die gemeinsamen Punkte erhält man indem man die Lösungen in die Geradengleichung einsetzt, sie sind R(-2;4) und T(1;1). (Man könnte die Lösungen auch in den quadratischen Term einsetzen, es müssen die gleichen y-Werte herauskommen.) Die Länge der Strecke [RT] ist \bar {RT}=\sqrt {(4-1)^2 + (-2-1)^2}=3\sqrt 2.

b) 2x^2-2=6 liefert x^2=4 mit den Lösungen x_1=-2, x_2=2.
R(-2;6), T(2;6) und \bar {RT}=4

c) -x^2 - 9 = -2x -7 liefert  x^2 - 2x +2 = 0. Die Diskriminante D dieser Gleichung ist D = (-2)2 - 4·2 = 4 - 8 = -4 < 0. Also hat die Gleichung keine Lösung und die Graphen keine gemeinsamen Punkte.

d)  4x^2 + x = 1,5x liefert  4x^2 - 0,5x = 0. Man kann 4x ausklammern:  4x(x - \frac{1}{8})=0 hat die zwei Löungen x_1 = 0, x_2 = \frac{1}{8}.
R(0;0), T(\frac{1}{8};\frac{3}{16}) und die Streckenlänge \bar {RT}=\sqrt {\frac{3}{16}^2 + \frac{1}{8}^2}=\frac{\sqrt {13}}{16}   \approx 0,225

e) \frac{1}{3}x^2 + \frac{2}{3}=2-x liefert \frac{1}{3}x^2 + x - \frac{4}{3}=0. Die linke Seite lässt sich umformen in \frac{1}{3}x^2 + x - \frac{4}{3}=\frac{1}{3}(x^2 + 3x -4)=\frac{1}{3}(x +4)8x-1) und man löst die Gleichung \frac{1}{3}(x +4)8x-1)=0 mit den zwei Lösungen x_1=-4, x_2=1
R(-4;-6) und T(1;1). Die Streckenlänge ist \bar {RT}=\sqrt {5^2+5^2}=5\sqrt 2 \approx 7,07.

f)  \frac{1}{2}(x-1)^2 - 1= -0,5x + 2,5 Multipliziert man die Gleichung mit 2, dann fällt der Bruch \frac{1}{2} weg und man hat (x^2-2x+1)-2=-x + 5. Diese Gleichung auf die Form einer quadratischen Gleichung gebracht ergibt x^2 - x - 6 = 0 mit den Lösungen x_=-2, x_2 = 3

R(-2;3,5) und T(3;1), \bar {RT}=\sqrt {5^2+2,5^2}=\sqrt{31,25}=\sqrt{\frac{125}{4}}=\frac{5}{2}\sqrt 5 \approx 5,6


Bleistift 35fach.jpg   Aufgabe 2

Gemeinsame Punkte zweier Parabeln: Buch S. 100 / 7

a)Die beiden Parabeln haben gemeinsame Punkte, da P2 schlanker als P1 ist und ihren Scheitel unterhalb vom Scheitel von P1 hat.
b) P1 ist nach oben geöffnet und P2 ist nach unten geöffnet und P2 hat ihren Scheitel oberhalb des Scheitels von P1, also müssen sich die beiden Parabeln schneiden.
c) P1 hat ihren Scheitel bei (0;0) und ist die Normalparabel, also nach oben geöffnet. P2 hat ihren Scheitel bei (2;-4) und ist nach unten geöffnet. Die beiden Parabeln können sich nicht schneiden.
d) P1 hat ihren Scheitel bei (1;0) und ist nach oben geöffnet, P2 bei (-1;0) und ist nachunten geöffnet. Da beide Scheitel den gleichen y-Wert 0 haben und verschiedene x-Werte, können sich die beiden Parabeln nicht schneiden.
e) P1 ist die Normalparabel, P2 ist eine schlankere Parabel mit Scheitel (0;1) und beide sind nach oben geöffnet, also können sie sich nicht schneiden.
f) P1 ist einen nach unten geöffnete weite Parabel mit Scheitel (0;1), P2 ist nach oben geöffnet mit Scheitel (0;-4). Wegen -4 < 0 schneiden sich die beiden Parabeln.

Rechnungen für a, b, f
a)x^2 = 2x^2 -4 liefert x^2=4 mit den zwei Lösungen x_1=-2, x_2=2
Die Schnittpunkte R(-2;4) und T(2;4) bilden mit den Scheiteln (0;0) und (0;-4) ein Viereck.

b) x^2 = -x^2 + 4 liefert x^2 = 2 mit den zwei Lösungen x_1=-\sqrt 2, x_2 = \sqrt 2.
Die Schnittpunkte R(-\sqrt 2 , 2), T(\sqrt 2 , 2) bilden mit den zwei Scheiteln (0;0) und (0;4) eine Raute mit 2 Symmetrieachsen. Ihr Flächeninhalt ist A = 4 \sqrt 2.

f) -\frac{1}{4} x^2 + 1 = x^2 - 4 liefert x^2 =4 mit den zwei Lösungen x_1= -2, x_2 = 2.
Die Schnittpunkte R(-2,0), T(2,0) bilden mit den zwei Scheiteln (0;1) und (0;-4) ein Drachenviereck mit einer Symmetrieachse.

Im folgenden Applet kannst du die Parabeln zu den Aufgaben und gegebenenfalls die Vierecke dir anzeigen lassen.


Bleistift 35fach.jpg   Aufgabe 3

Gemeinsame Punkte zweier Funktionsgraphen: Buch S. 101 / 8

a) \frac{1}{x}=x --> x^2=1 und x_1=-1, x_2=1.
R(-1;-1) und T(1;1)

b) \frac{1}{x}=2x --> x^2 = \frac{1}{2} und x_1=-\frac{\sqrt 2}{2}, x_2=\frac{\sqrt 2}{2}
R(-\frac{\sqrt 2}{2};\sqrt 2), T(\frac{\sqrt 2}{2};\sqrt 2)

c)  \frac{5}{x-2}=x+2 --> x^2=9 und x_1=-3, x_2=3
R(-3;-1) und T(3;5)

d) \frac{5}{x+1}=-5 --> x = -2
R(-2;-5)

e) Beim Funktionsterm von f kann man im Zähler 2 ausklammern und dann den Bruch mit x-4 kürzen, also ist f(x) = 2.
2 = 2x+1 --> x=\frac{1}{2}
R(\frac{1}{2};2)

f)  \frac{2}{x-1}= 1-x -->  x^2 = -1 ist nicht lösbar, also kein Schnittpunkt.

g)  -\frac{3}{x} = \frac{1}{x+1} --> x=-\frac{3}{4}
R(-\frac{3}{4};4)

h) <matsh>\frac{16}{x}=x</math> --> x^2 = 16 und x_1=-4, x_2=4
R(-4;-4) und T(4;4)

i)  x^2 - 4 = x^2 -x --> x=4
R(4;12)

Im folgenden Applet kannst du dir die Graphen zu den Aufgaben und die Schnittpunkte anzeigen lassen.

Textaufgaben

Bleistift 35fach.jpg   Aufgabe 4

Buch S. 104 / 6

Man legt ein Koordinatensystem an die Wasseraustrittsdüse. Dann sind die beiden Nullstellen der Parabel 3,2m voneinander entfernt. Der Scheitel ist bei 1,6m und hat die Höhe 1,7m. Diese Werte kann man in die Scheitelform der Parabelgleichung einsetzen. y = a(x-1,6)^2 + 1,7.
Nun muss man noch a bestimmen. Die eine Nullstelle ist im Ursprung (0;0), die andere Nullstelle ist (3,2;0). Setzt man die Koordinaten der zweiten Nullstelle in die Gleichung ein, dann kann man a bestimmen.
0=a(3,2 - 1,6)^2 + 1,7 -->  a = -\frac{1,7}{2,56} = -\frac{85}{128} und y= -\frac{85}{128}(x-1,6)^2 + 1,7 =  -\frac{85}{128} x^2 +  \frac{17}{8}x


Andere Lösung: Man legt das Koordinatensystem so, dass der Ursprung direkt unter dem Scheitel ist und die Wasseraustrittdüse und die Stelle, an der das Wasser wieder aufkommt auf der x-Achse liegen. Dann ist S(0;1,7) und die beiden Nullstellen (-1,6;0) und (1,6;0).
Damit erhält man als Gleichung für die Parabel y = a(x+1,6)(x-1,6) oder y = a(x^2 -2,56).
Setzt man nun die Koordinaten des Scheitels in die Gleichung, dann erhält man 1,7 = a \cdot (-2,56) und  a = -\frac{1,7}{2,56} = -\frac{85}{128}.
Die Gleichung der Parabel ist dann  y = -\frac{85}{128}x^2 + 1,7 .

Dies ist nicht die Gleichung wie bei der ersten Lösung, aber wir haben ja auch das Koordinatensystem anders gelegt.


Bleistift 35fach.jpg   Aufgabe 5

Buch S. 105 / 8

Aus der Zeichnung und dem Text kann man die Koordinaten der Punkte angeben: A(0;0), B(100;20), C(20,e). Der Ursprung des Koordinatensystems liegt in A. Aus der Zeichnung sieht man auch noch die zweite Nullstelle D(40;0).
a) Man hat die zwei Nullstellen, also ist y=a\cdot x\cdot (x-40).
Setzt man die Koordinaten von B in die Gleichung, dann ist  20 = a \cdot 100(100-40) und a=\frac{1}{300}.
Die Gleichung der Parabel ist also y=\frac{1}{300}x(x-40) und wenn man den Term ausmultipliziert y = \frac{1}{300}x^2 - \frac{2}{15}x.
Die Scheitelform ist y = \frac{1}{300}(x-20)^2 -\frac{4}{3}.


Oder wenn man mit der Scheitelform beginnt: y=a(x-d)^2 + e
Vom Scheitel C(20;e) weiß man die x-Koordinate, also ist d = 20 und y=a(x-20)^2+e.
Setzt man die Koordinaten von A in die Gleichung: (1) 0 = a\cdot (-20)^2 +e
Setzt man die Koordinaten von B in die Gleichung: (2) 20 = a\cdot 80^2+e
Subtrahiert man nun Gleichung (1) von Gleichung (2), so hat man 20 = 6400a - 400a und a=\frac{1}{300}.
Setzt man a in Gleichung (1), dann erhält man 0=\frac{1}{300}\cot 400 + e und  e = -\frac{4}{3}.
Die Scheitelform ist y = \frac{1}{300}(x-20)^2 -\frac{4}{3}.
Durch Ausmultiplizieren und zussammenfassen erhält man y = \frac{1}{300}x^2 - \frac{2}{15}x.
In der letzten Gleichung kann man auf der rechten Seite \frac{x}{300} ausklammern und erhält y=\frac{1}{300}x(x-40).

b) Der Durchhang h(x) ergibt sich als Differenz (bei gleichem x) der y-Koordinate der Geraden [AB] und der y-Koordinate der Parabel.
Die Gerade [AB] hat die Gleichung y = \frac{1}{5}x.
Die Gleichung der Parabel ist y = \frac{1}{300}x^2 - \frac{2}{15}x.
Damit ist h(x)= \frac{1}{5}x - (\frac{1}{300}x^2 - \frac{2}{15}x).
Fasst man den Term auf der rechten Seite zusammen, dann erhält man h(x)=-\frac{1}{300}x^2+\frac{1}{3}x.
Man will nun den größten Wert des Durchhangs wissen. Der Funktionsterm für h(x) ist eine nach unten geöffnete Parabel, die ihren größten y-Wert im Scheitel hat, also muss man den Scheitel bestimmen.
Die x-Koordinate des Scheitels erhält man, wenn man die Mitte der zwei Nullstellen nimmt. Dafür klammert man auf der rechten Seite -\frac{x}{300} aus und erhält  h(x)=-\frac{1}{300}x(x-100).
Hier kann die Nullstellen ablesen: x_1=0, x_2=100 und genau in der Mitte ist die x-Koordinate des Scheitels x_S=50.

Setzt man diesen Wert in h(x) ein, dann erhält man den größten Durchhang h(50)=8\frac{1}{3}.


Bleistift 35fach.jpg   Aufgabe 6

Nürnberg, Burg, Tiefer Brunnen, 003.jpg Buch S. 107 / IV

a) Für den freien Fall eines Körpers kennt man aus der Physik die Formel  h = \frac{1}{2}gt^2. Dabei ist g die Erdbeschleunigung g = 9,81\frac{m}{s^2}.
Setzt man die gemessene Zeit t = 3,44s in die Gleichung für h, dann erhält man h=\frac{1}{2}\cdot 9,81\cdot {m}{s^2}\cdot (3,44s)^2=58m.

b) Sophie hat mit ihrem Einwand natürlich Recht. Die gemessene Zeit setzt sich zusammen aus der

  • Fallzeit t_{Stein}des Steins und
  • der Zeit t_{Schall}, die der Schall vom Boden bis zum Standort

braucht. Es ist 3,44s = t_{Stein} + t_{Schall}.
Der Stein und der Schall legen beide jeweils den Weg h zurück. Dabei macht der Stein eine Bewegung mit konstanter Beschleunigung und der Schall eine Bewegung mit konstanter Geschwindigkeit.
Der Stein wird mit konstanter Beschleunigung beschleunigt, dabei ist der zurückgelegte Weg h = \frac{1}{2}gt_{Stein}^2.
Der Schall macht eine Bewegung mit konstanter Geschwindigkeit, dabei ist der zurückgelegte Weg h=c_{Schall}t, wobei c_{Schall} \approx 340\frac{m}{s} ist.
Da in beiden Fällen der gleiche Weg h zurückgelegt wird, kann man die beiden Gleichungen gleich setzen.
\frac{1}{2}gt_{Stein}^2=c_{Schall}t
Dies ist eine Gleichung mit zwei Unbekannten t_{Stein} und t_{Schall}.
Von Sophia wissen wir, dass 3,44s = t_{Stein} + t_{Schall} ist. Das ist die zweite Gleichung.
Man hat ein Gleichungssystem mit zwei Unbekannten:
(1) \frac{1}{2}gt_{Stein}^2=c_{Schall}t
(2) 3,44s = t_{Stein} + t_{Schall}
Löst man (2) nach t_{Schall} auf und setzt den erhaltenenen Term in (1) ein, dann hat man
\frac{1}{2}gt_{Stein}^2=c_{Schall}(3,44s - t_{Stein})
Man erhält eine quadratische Gleichung für t_{Stein}: \frac{1}{2}gt_{Stein}^2+c_{Schall}t_{Stein}-c_{Schall }\cdot 3,44s=0
Mit der Lösungsformel erhält man t_{Stein 1,2}=\frac{-c_{Schall} \pm \sqrt {(c_{Schall})^2+4\cdot \frac{1}{2}g\cdot c_{Schall}\cdot 3,44s}}{2\cdot \frac{1}{2}g}= \frac{-340\frac{m}{s} \pm \sqrt {(340\frac{m}{s})^2+4\cdot \frac{1}{2}\cdot 9,81 \frac{m}{s^2} \cdot 340\frac{m}{s}\cdot 3,44s}}  {2\cdot \frac{1}{2}9,81\frac{m}{s^2}}
Das -Zeichen vor der Wurzel kann man weglassen, da sonst im Zähler etwas Negatives stehen würde und damit die Zeit negativ wäre. Dies kann nicht sein. Also kann man gleich nur mit dem + rechnen. Setzt man die Werte ein, dann erhält man <matsh>t_{Stein}=3,284s
und für den Schall t_{Schall}=0,156s.
Damit erhält man für die Tiefe des Brunnens

  • bei der Bewegung mit konstanter Beschleunigung des Steins h=\frac{1}{2}\cdot 9,81\frac{m}{s^2}\cdot (3,284s)^2=52,9m
  • bei der Bewegung des Schalls mit konstanter Geschwindigkeit h=340\ frac{m}{s}\cdot 0,156s=53,0m.