M9 Anwendungen und Aufgaben zu quadratischen Funktionen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Gemeinsame Punkte von Funktionsgraphen)
(Gemeinsame Punkte von Funktionsgraphen)
Zeile 51: Zeile 51:
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
 
}}
 
}}
 +
<center><ggb_applet height="700" width="900" filename="100-8.ggb" /></center>

Version vom 18. Februar 2021, 11:37 Uhr

Gemeinsame Punkte von Funktionsgraphen

Nuvola apps kig.png   Merke

Gemeinsame Punkte von Funktionsgraphen findet man, indem man die Funktionsterme gleichsetzt und die Gleichung nach x auflöst.


Bleistift 35fach.jpg   Aufgabe 1

Gemeinsame Punkte einer Parabel mit einer Geraden: Buch S. 100 / 4

a) x^2 = -x+2 liefert eine quadratische Gleichung x^2 + x -2 = 0. Die Gleichung lässt sich in Linearfaktoren zerlegen (x+2)(x-1)=0 mit den zwei Lösungen x_1 = -2, x_2 = 1.
Die gemeinsamen Punkte erhält man indem man die Lösungen in die Geradengleichung einsetzt, sie sind R(-2;4) und T(1;1). (Man könnte die Lösungen auch in den quadratischen Term einsetzen, es müssen die gleichen y-Werte herauskommen.) Die Länge der Strecke [RT] ist \bar {RT}=\sqrt {(4-1)^2 + (-2-1)^2}=3\sqrt 2.

b) 2x^2-2=6 liefert x^2=4 mit den Lösungen x_1=-2, x_2=2.
R(-2;6), T(2;6) und \bar {RT}=4

c) -x^2 - 9 = -2x -7 liefert  x^2 - 2x +2 = 0. Die Diskriminante D dieser Gleichung ist D = (-2)2 - 4·2 = 4 - 8 = -4 < 0. Also hat die Gleichung keine Lösung und die Graphen keine gemeinsamen Punkte.

d)  4x^2 + x = 1,5x liefert  4x^2 - 0,5x = 0. Man kann 4x ausklammern:  4x(x - \frac{1}{8})=0 hat die zwei Löungen x_1 = 0, x_2 = \frac{1}{8}.
r(0;0), T(\frac{1}{8};{3}{16} und die Streckenlänge \bar {RT}=\sqrt {\frac{3}{16}^2 + \frac{1}{8}^2}=\frac{13}{256}   \approx 0,05

e) \frac{1}{3}x^2 + \frac{2}{3}=2-x liefert \frac{1}{3}x^2 + x - \frac{4}{3}=0. Die linke Seite lässt sich umformen in \frac{1}{3}x^2 + x - \frac{4}{3}=\frac{1}{3}(x^2 + 3x -4)=\frac{1}{3}(x +4)8x-1) und man löst die Gleichung \frac{1}{3}(x +4)8x-1)=0 mit den zwei Lösungen x_1=-4, x_2=1
R(-4;-6) und T(1;1). Die Streckenlänge ist \bar {RT}=\sqrt {5^2+5^2}=5\sqrt 2 \approx 7,07.

f)  \frac{1}{2}(x-1)^2 - 1= -0,5x + 2,5 Multipliziert man die Gleichung mit 2, dann fällt der Bruch \frac{1}{2} weg und man hat (x^2-2x+1)-2=-x + 5. Diese Gleichung auf die Form einer quadratischen Gleichung gebracht ergibt x^2 - x - 6 = 0 mit den Lösungen x_=-2, x_2 = 3

R(-2;3,5) und T(3;1), \bar {RT}=\sqrt {5^2+2,5^2}=\sqrt{31,25}=\sqrt{\frac{125}{4}}=\frac{5}{2}\sqrt 5 \approx 5,6


Bleistift 35fach.jpg   Aufgabe 2

Gemeinsame Punkte zweier Parabeln: Buch S. 100 / 7

a)Die beiden Parabeln haben gemeinsame Punkte, da P2 schlanker als P1 ist und ihren Scheitel unterhalb vom Scheitel von P1 hat.
b) P1 ist nach oben geöffnet und P2 ist nach unten geöffnet und P2 hat ihren Scheitel oberhalb des Scheitels von P1, also müssen sich die beiden Parabeln schneiden.
c) P1 hat ihren Scheitel bei (0;0) und ist die Normalparabel, also nach oben geöffnet. P2 hat ihren Scheitel bei (2;-4) und ist nach unten geöffnet. Die beiden Parabeln können sich nicht schneiden.
d) P1 hat ihren Scheitel bei (1;0) und ist nach oben geöffnet, P2 bei (-1;0) und ist nachunten geöffnet. Da beide Scheitel den gleichen y-Wert 0 haben und verschiedene x-Werte, können sich die beiden Parabeln nicht schneiden.
e) P1 ist die Normalparabel, P2 ist eine schlankere Parabel mit Scheitel (0;1) und beide sind nach oben geöffnet, also können sie sich nicht schneiden.
f) P1 ist einen nach unten geöffnete weite Parabel mit Scheitel (0;1), P2 ist nach oben geöffnet mit Scheitel (0;-4). Wegen -4 < 0 schneiden sich die beiden Parabeln.

Rechnungen für a, b, f
a)x^2 = 2x^2 -4 liefert x^2=4 mit den zwei Lösungen x_1=-2, x_2=2
Die Schnittpunkte R(-2;4) und T(2;4) bilden mit den Scheiteln (0;0) und (0;-4) ein Viereck.

b) x^2 = -x^2 + 4 liefert x^2 = 2 mit den zwei Lösungen x_1=-\sqrt 2, x_2 = \sqrt 2.
Die Schnittpunkte R(-\sqrt 2 , 2), T(\sqrt 2 , 2) bilden mit den zwei Scheiteln (0;0) und (0;4) eine Raute mit 2 Symmetrieachsen. Ihr Flächeninhalt ist A = 4 \sqrt 2.

f) -\frac{1}{4} x^2 + 1 = x^2 - 4 liefert x^2 =4 mit den zwei Lösungen x_1= -2, x_2 = 2.
Die Schnittpunkte R(-2,0), T(2,0) bilden mit den zwei Scheiteln (0;1) und (0;-4) ein Drachenviereck mit einer Symmetrieachse.

Im folgenden Applet kannst du die Parabeln zu den Aufgaben und gegebenenfalls die Vierecke dir anzeigen lassen.


Bleistift 35fach.jpg   Aufgabe 3

Gemeinsame Punkte zweier Funktionsgraphen: Buch S. 101 / 8