M9 Quadratische Funktionen und lineare Gleichungssysteme: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 20: Zeile 20:
 
Was macht man aber, wenn man nur drei Punkte A, B und C gegeben hat.  
 
Was macht man aber, wenn man nur drei Punkte A, B und C gegeben hat.  
  
1. Beispiel: Gegeben sind die drei Punkte A(0;0), B(2;4) und C(3;9).<br>
+
'''1. Beispiel''': Gegeben sind die drei Punkte A(0;0), B(2;4) und C(3;9).<br>
 
Da du fit bei den quadratischen Funktionen bist sieht du sofort, dass die Punkte auf dem Graph der Funktion <math>f:x\rightarrow x^2</math>, der Normalparabel liegen.<br>
 
Da du fit bei den quadratischen Funktionen bist sieht du sofort, dass die Punkte auf dem Graph der Funktion <math>f:x\rightarrow x^2</math>, der Normalparabel liegen.<br>
  
 
Wenn du es nicht sofort sieht, dann mach folgende Überlegung mit.<br>
 
Wenn du es nicht sofort sieht, dann mach folgende Überlegung mit.<br>
 +
Wir wollen schauen, ob es eine Parabel gibt, auf der die drei Punkte liegen. Eine Parabel hat die Gleichung <math>y = ax^2+bx+c</math>. Wenn wir die Koordinaten der drei Punkte jeweils einsetzen, dann erhalten wir drei Gleichungen:<br>
 +
Punkt A(0;0) --> <math>0=a\cdot 0^2 + b\cdot 0 + c</math><br>
 +
Punkt B(2;4) --> <math>4=a\cdot 2^2 + b \cdot 2 + c</math><br>
 +
Punkt C(3;9) --> <math>9 = a\cdot 3^2 + b\cdot 3 + c</math>.<br>
 +
Wir müssen also die Koeffizienten a, b, c der Parabelgleichung bestimmen und dafür stehen uns die drei Gleichungen zur Verfügung. <br>
 +
Aus der 1. Gleichung für A erhält man sofort <math>c=0</math>. Also hat man nur noch zwei Gleichungen in die wir für c auch 0 gleich einsetzen.<br>
 +
Punkt B --> <math>4 = 4a + 2b</math><br>
 +
Punkt C --> <math>9 = 9a + 3b</math><br>
 +
Dividiert man die Gleichung von B durch 2 und löst sie nach b auf, dann erhält man <math>b = 2-2a</math>.<br>
 +
Setzt man dies für b in die Gleichung von C ein, dann muss man die Gleichung <math>9 = 9a +3(2-2a)</math> lösen.<br>
 +
Klammern auflösen und alles mit a auf die linke Seite und alles ohne a auf rechte Seite bringen: <math>3 = 3a</math><br>
 +
Die Seiten vertauschen und durch den Koeffizienten von a teilen, liefert <math>a = 1</math><br>
 +
Damit ist dann <math>b=2-2\cdot 1=0</math> und die Gleichung der Parabel ist <math>y=x^2</math>
 +
 +
'''2. Beispiel''': Gegeben sind die drei Punkte A(0;2), B(4;18) und C(-1;8). <br>
 +
Hier sieht man, auch wenn man fit bei den quadratischen Funktionen ist, nicht sofort die Funktions- bzw. Parabelgleichung. <br>
 +
Aber das Verfahren, das wir gerade kennengelernt haben funktioniert auch hier.<br>
 +
Da wir die Funktionsgleichung nicht kennen, machen wir den allgemeinen Ansatz <math>y = ax^2+bx+c</math> und setzen jeweils die Koordinten der drei Punkte ein.<br>
 +
Punkt A/0;2) --> <math>2 = a\cdot 0^2 + b\cdot 0 + c</math><br>
 +
Punkt B(4;18) --> <math>18=a\cdot 4^2 + b\cdot 4 + c</math><br>
 +
Punkte C(-1;8) --> <math>8 = a \cdot (-1)^2 + b\cdot (-1) + c</math><br>
 +
Aus der Gleichung für A erhält man auch hier sofort <math>c=2</math>. Diesen Wert 2 für c setzen wir in die anderen zwei Gleichungen ein.<br>
 +
Punkt B --> <math>18=16a+4b+2</math><br>
 +
Punkt C --> <math>8=a -b +2</math><br>
 +
Nun fassst man die beiden Gleichungen zusammen<br>
 +
B: <math>16 = 16a + 4b</math><br>
 +
C: <math>6 = a-b</math>
 +
Nun kann man die Gleichung von B durch 4 teilen und nach b auf lösen und hat dann <math>b=4-4a</math>. Setzt man dies in die Gleichung für C ein, dann hat man <math>6=a-(4-4a)</math>. Da vor b ein - steht, macht man um 4-4a Klammern!<br>
 +
<math>6=a-4+4a</math> --> <math>10 = 5a</math> --> <math>a = 2</math><br>
 +
Damit ist dann <math>b= 4-4a = 4-4\cdot 2=-4</math><br>
 +
Die Funktionsgleichung bzw. die Gleichung der Parabel ist <math>y=2c^2-4x+2</math>
 +
 +
'''3. Beispiel''': Gegeben sind die zwei Punkte P(0;0), S(0,5;1,5), wobei S der Scheitelpunkt ist. <br>
 +
Hier sind nur zwei Puntke gegeben, aber der Scheitel ist dabei. Damit könnten wir es mit der Scheitelform machen.<br>
 +
<math>y=a(x-0,5)^2-1,5</math> und <math>0=a(1-0,5)^2+1,5</math>. <br>
 +
Die zweite Gleichung liefert <math>0 =a\cdot 0,25+1,5</math> und <math>a=-6</math>.<br>
 +
Also ist die Parabelgleichung <math>y = -6(x-0,5)^2+1,6</math> oder <math>y=-6x^2+6x</math>
 +
 +
Es geht aber auch mit der Methode, die wir gerade kennengelernt haben. Der allgemeine Ansatz ist wieder <math><=ax^2+bx+c</math><br>
 +
Punkt P(0;0) --> <math>0=a\cdot 0^2+b\cdot 0 + c</math><br>
 +
Punkt S(0,5;1,5) --> <math>1,5=a\cdot 0,5^2 + b\cdot 0,5 +c</math><br>
 +
Aus der Gleichung für P erhält man <math>c=0</math>. Dies setzt man in die Gleichung von S ein.<br>
 +
<math>1,5=0,25a+0,5b</math>.
 +
Nun hat man aber eine Gleichung aber mit zwei Unbekannten. Wie soll man das lösen? Dafür gibg es unendlich viele Lösungen.
 +
Nun erinnert man sich, dass diese Parabel noch eine zweite Nullstelle hat. Die x-Koordinate von S liegt in der Mitte der beiden Nullstellen, also ist die zweite Nullstelle Q(1;0) und damit hat man eine dritte Gleichung.<br>
 +
Punkt Q --> <math>0=a\cdot 1^2+b\cdot 1</math>.<br>
 +
Nun muss man folgendes Gleichungssystem aus zwei Gleichungen mit zwei Unbekannten a und b lösen.<br>
 +
P --> <math>1,5=0,25a+0,5b</math><br>
 +
Q --> <math>0 = a+b</math><br>
 +
Man löst die Glelichung für Q nach a auf --> <math> a = -b</math> und setzt dies in die Gleichung für P ein.<br>
 +
<math>1,5 = 0,25\cdot (-b) + 0,5b</math> --> <math>1,5=0,25b</math> und b<math>b=6</math>.
 +
Damit ist <math>a=-6</math> und die Gleichung der Parabel <math>y=-6x^2+6x</math>, also das selbe Ergebnis wie oben.

Version vom 9. Februar 2021, 10:02 Uhr

In der 8. Klasse hast du gelernt lineare Gleichungssysteme von zwei Gleichungen mit zwei Unbekannten zu lösen. Schau dir zur Wiederholung wie das geht dieses Video an:

Wir brauchen diese Verfahren um folgendes Problem zu lösen. Wir haben Punkte und wollen schauen, ob die Punkte auf einer Parabel liegen.

Ein Tourist schreibt aus St. Louis (USA) eine Ansichtskarte nach Hause.

STL Skyline 2007 edit.jpg

Er beschreibt die besonderheit des Gateway Arch, dass die Breite unten am Fuß genauso groß ist wie die Höhe des Bauwerks, nämlich 192m. Und es erinnert ihn sehr an eine Parabel.

Kannst du eine Parabelgleichung für den Bogen angeben?

Legt man in den linken unteren Fußpunkt den Ursprung eines Koordinatensystems, so ist der rechte Fußpunkt bei (192;0) und der Scheitel S(96;192).
Mit der Scheitelform der Parabelgleichung erhält man sofort y = a(x-96)^2+192.
Nun muss man noch a bestimmen. Dazu verwendet man den linken Fußpunkt (0;0). Setzt man die Koordinatenwerte in die Gleichung ein, dann hat man 0 = a(-96)^2+192 und es ergibt sich a = -\frac{192}{96^2}=-\frac{1}{48}.
Also erhält man als Parabelgleichung y=-\frac{1}{48}(x-96)^2+192

Man bringt diese Gleichung noch auf die normale Form -\frac{1}{48}(x^2-192x+ 96^2)+192=-\frac{1}{48}x^2+4x -192+192=-\frac{1}{48}x^2 + 4x, also y=-\frac{1}{48}x^2 + 4x.

Wenn der Scheitel S und eine Nullstelle gegeben ist kann man mit der Scheitelform relativ leicht eine Parabelgleichung angeben.

Was macht man aber, wenn man nur drei Punkte A, B und C gegeben hat.

1. Beispiel: Gegeben sind die drei Punkte A(0;0), B(2;4) und C(3;9).
Da du fit bei den quadratischen Funktionen bist sieht du sofort, dass die Punkte auf dem Graph der Funktion f:x\rightarrow x^2, der Normalparabel liegen.

Wenn du es nicht sofort sieht, dann mach folgende Überlegung mit.
Wir wollen schauen, ob es eine Parabel gibt, auf der die drei Punkte liegen. Eine Parabel hat die Gleichung y = ax^2+bx+c. Wenn wir die Koordinaten der drei Punkte jeweils einsetzen, dann erhalten wir drei Gleichungen:
Punkt A(0;0) --> 0=a\cdot 0^2 + b\cdot 0 + c
Punkt B(2;4) --> 4=a\cdot 2^2 + b \cdot 2 + c
Punkt C(3;9) --> 9 = a\cdot 3^2 + b\cdot 3 + c.
Wir müssen also die Koeffizienten a, b, c der Parabelgleichung bestimmen und dafür stehen uns die drei Gleichungen zur Verfügung.
Aus der 1. Gleichung für A erhält man sofort c=0. Also hat man nur noch zwei Gleichungen in die wir für c auch 0 gleich einsetzen.
Punkt B --> 4 = 4a + 2b
Punkt C --> 9 = 9a + 3b
Dividiert man die Gleichung von B durch 2 und löst sie nach b auf, dann erhält man b = 2-2a.
Setzt man dies für b in die Gleichung von C ein, dann muss man die Gleichung 9 = 9a +3(2-2a) lösen.
Klammern auflösen und alles mit a auf die linke Seite und alles ohne a auf rechte Seite bringen: 3 = 3a
Die Seiten vertauschen und durch den Koeffizienten von a teilen, liefert a = 1
Damit ist dann b=2-2\cdot 1=0 und die Gleichung der Parabel ist y=x^2

2. Beispiel: Gegeben sind die drei Punkte A(0;2), B(4;18) und C(-1;8).
Hier sieht man, auch wenn man fit bei den quadratischen Funktionen ist, nicht sofort die Funktions- bzw. Parabelgleichung.
Aber das Verfahren, das wir gerade kennengelernt haben funktioniert auch hier.
Da wir die Funktionsgleichung nicht kennen, machen wir den allgemeinen Ansatz y = ax^2+bx+c und setzen jeweils die Koordinten der drei Punkte ein.
Punkt A/0;2) --> 2 = a\cdot 0^2 + b\cdot 0 + c
Punkt B(4;18) --> 18=a\cdot 4^2 + b\cdot 4 + c
Punkte C(-1;8) --> 8 = a \cdot (-1)^2 + b\cdot (-1) + c
Aus der Gleichung für A erhält man auch hier sofort c=2. Diesen Wert 2 für c setzen wir in die anderen zwei Gleichungen ein.
Punkt B --> 18=16a+4b+2
Punkt C --> 8=a -b +2
Nun fassst man die beiden Gleichungen zusammen
B: 16 = 16a + 4b
C: 6 = a-b Nun kann man die Gleichung von B durch 4 teilen und nach b auf lösen und hat dann b=4-4a. Setzt man dies in die Gleichung für C ein, dann hat man 6=a-(4-4a). Da vor b ein - steht, macht man um 4-4a Klammern!
6=a-4+4a --> 10 = 5a --> a = 2
Damit ist dann b= 4-4a = 4-4\cdot 2=-4
Die Funktionsgleichung bzw. die Gleichung der Parabel ist y=2c^2-4x+2

3. Beispiel: Gegeben sind die zwei Punkte P(0;0), S(0,5;1,5), wobei S der Scheitelpunkt ist.
Hier sind nur zwei Puntke gegeben, aber der Scheitel ist dabei. Damit könnten wir es mit der Scheitelform machen.
y=a(x-0,5)^2-1,5 und 0=a(1-0,5)^2+1,5.
Die zweite Gleichung liefert 0 =a\cdot 0,25+1,5 und a=-6.
Also ist die Parabelgleichung y = -6(x-0,5)^2+1,6 oder y=-6x^2+6x

Es geht aber auch mit der Methode, die wir gerade kennengelernt haben. Der allgemeine Ansatz ist wieder <=ax^2+bx+c
Punkt P(0;0) --> 0=a\cdot 0^2+b\cdot 0 + c
Punkt S(0,5;1,5) --> 1,5=a\cdot 0,5^2 + b\cdot 0,5 +c
Aus der Gleichung für P erhält man c=0. Dies setzt man in die Gleichung von S ein.
1,5=0,25a+0,5b. Nun hat man aber eine Gleichung aber mit zwei Unbekannten. Wie soll man das lösen? Dafür gibg es unendlich viele Lösungen. Nun erinnert man sich, dass diese Parabel noch eine zweite Nullstelle hat. Die x-Koordinate von S liegt in der Mitte der beiden Nullstellen, also ist die zweite Nullstelle Q(1;0) und damit hat man eine dritte Gleichung.
Punkt Q --> 0=a\cdot 1^2+b\cdot 1.
Nun muss man folgendes Gleichungssystem aus zwei Gleichungen mit zwei Unbekannten a und b lösen.
P --> 1,5=0,25a+0,5b
Q --> 0 = a+b
Man löst die Glelichung für Q nach a auf -->  a = -b und setzt dies in die Gleichung für P ein.
1,5 = 0,25\cdot (-b) + 0,5b --> 1,5=0,25b und bb=6. Damit ist a=-6 und die Gleichung der Parabel y=-6x^2+6x, also das selbe Ergebnis wie oben.