Diskussion:M11 Skalarprodukt: Unterschied zwischen den Versionen
Zeile 26: | Zeile 26: | ||
[[Datei:113-19.jpg]]<br> | [[Datei:113-19.jpg]]<br> | ||
Der Winkel ALF bezeichne ich mit <math>\alpha</math>. Es ist <math>cos \alpha = \frac{\vec {LA}\circ \vec {LF}}{|\vec{LA}||\vec {LF}}=\frac{\left ( \begin{array}{c} 0 \\\ -3 \\\ 4 \end{array}\right) \circ \left ( \begin{array}{c} 4 \\\ -3 \\\ 0 \end{array}\right)}{5\cdot 5}=\frac{9}{25}</math> und <math>\alpha = 68,9^o</math><br> | Der Winkel ALF bezeichne ich mit <math>\alpha</math>. Es ist <math>cos \alpha = \frac{\vec {LA}\circ \vec {LF}}{|\vec{LA}||\vec {LF}}=\frac{\left ( \begin{array}{c} 0 \\\ -3 \\\ 4 \end{array}\right) \circ \left ( \begin{array}{c} 4 \\\ -3 \\\ 0 \end{array}\right)}{5\cdot 5}=\frac{9}{25}</math> und <math>\alpha = 68,9^o</math><br> | ||
− | Das Volumen der Pyramide ist <math>V=\frac{1}{3}\cdot 3 \cdot 4 \cdot 4= | + | Das Volumen der Pyramide ist <math>V=\frac{1}{3}\cdot \frac{1}{2} \cdot 3 \cdot 4 \cdot 4=8</math> |
− | 113/20 | + | 113/20<br> |
+ | Es ist <math>\vec {AB}=\left ( \begin{array}{c} 2 \\\ -3 \\\ 0 \end{array}\right), \vec {BC_a}=\left ( \begin{array}{c} 0 \\\ 3 \\\ a-2 \end{array}\right), \vec {AC_a}=\left ( \begin{array}{c} 2 \\\ 0 \\\ a-2 \end{array}\right)</math><br> | ||
+ | Es ist <math>\vec {AB} \circ \vec {AC_a}= \left ( \begin{array}{c} 2 \\\ -3 \\\ 0 \end{array}\right) \circ \left ( \begin{array}{c} 2 \\\ 0 \\\ a-2 \end{array}\right) = 4+0+0=4</math>, also ist bei A kein rechter Winkel.<br> | ||
+ | Es ist <math>\vec {BA} \circ \vec {BC_a}=\left ( \begin{array}{c} -2 \\\ 3 \\\ 0 \end{array}\right) \circ \left ( \begin{array}{c} 0 \\\ 3 \\\ a-2 \end{array}\right) = 0+9+0=9</math>, also ist bei B kein rechter Winkel.<br> | ||
+ | Das Dreieck ABC<sub>a</sub> hat bei C<sub>a</sub> den rechten Winkel. Nun sucht man den Wert von a, für den das Skalarprodukt <math>\vec {C_aA} \circ \vec {C_aB}=0</math> ist.<br> | ||
+ | <math>\vec {C_aA} \circ \vec {C_aB}=\left ( \begin{array}{c} -2 \\\ 0 \\\ 2-a \end{array}\right ) \circ \left ( \begin{array}{c} 0 \\\ -3 \\\ 2-a \end{array}\right)=0+0+(2-a)^2=0</math> für <math>a=2</math>.<br> | ||
+ | Die Grundfläche der Pyramide liegt in einer zur x<sub>1</sub>x<sub>2</sub>-Ebene parallelen Ebene im Abstand 2. Das Volumen der Pyramide ist dann <math>V= \frac{1}{3}\cdot \frac{1}{2}\cdot 2 \cdot 3 \cdot 2 = 2</math><br> | ||
+ | __NOCACHE__ | ||
+ | <ggb_applet height="600" width="600" | ||
+ | filename="113-20.ggb" /> |
Version vom 25. Januar 2021, 08:19 Uhr
Buch S. 112 / 10
Die Vektoren und stehen senkrecht aufeinander, d.h. .
a)
b)
c) Eine Hommage an die binomischen Formeln!
Buch S. 112 / 14
Man weiß aus der Mittelstufe, dass der Flächeninhalt eines Parallelogramms A = gh ist. D.h. fälllt man von der Spitze von das Lot auf erhält man die Höhe h.
a steht für und b für . Es ist dann und h ist , also q.e.d.
b) (Beachten Sie, dass und senkrecht zueinander sind.
c) ,
112/15 In dieser Aufgabe wird ein bekannter Satz der Mittelstufe mit Vektoren bewiesen. Man soll zeigen, dass der Winkel ACB gleich 90o ist. Dies macht man mit dem Skalarprodukt. Wenn das Skalarprodukt der Vektoren und gleich 0 ist, dann ist bei C ein rechter Winkel.
Man drückt und durch aus. Es ist und .
Man sieht aus der Zeichnung, dass ist.
Das Skalarprodukt ist dann
Buch S. 113 / 16
A(2;0,0), B(0;2;0), C(0;0;2) und S(0;0;0)
a) siehe Definition des Skalarprodukts
b) . Es ist
113/19
Der Winkel ALF bezeichne ich mit . Es ist und
Das Volumen der Pyramide ist
113/20
Es ist
Es ist , also ist bei A kein rechter Winkel.
Es ist , also ist bei B kein rechter Winkel.
Das Dreieck ABCa hat bei Ca den rechten Winkel. Nun sucht man den Wert von a, für den das Skalarprodukt ist.
für .
Die Grundfläche der Pyramide liegt in einer zur x1x2-Ebene parallelen Ebene im Abstand 2. Das Volumen der Pyramide ist dann