|
|
(4 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | Buch S. 112 / 10<br>
| |
− | Die Vektoren <math>\vec a</math> und <math>\vec b</math> stehen senkrecht aufeinander, d.h. <math>\vec a \circ \vec b = 0</math>. <br>
| |
− | a) <math>(\vec a + \vec b)^2 =\vec a^2 + 2\vec a \circ \vec b + \vec b^2=|\vec a|^2 + |\vec b|^2=25+144=169</math><br>
| |
− | b) <math>(\vec a + \vec b) \circ (2\vec a - \vec b)=2\vec a^2-\vec a \circ \vec b+\vec b \circ 2\vec a - \vec b^2= 2 \cdot 25 - 144 =-94</math><br>
| |
− | c) Eine Hommage an die binomischen Formeln!<br>
| |
− | <math>(\vec a + \vec b)^2+(\vec a - \vec b)^2+(\vec a + \vec b)(\vec a -a\vec b) = \vec a^2 + 2 \vec a \circ \vec b + \vec b^2 + \vec a^2 - 2 \vec a \circ \vec b + \vec b^2 + \vec a^2 - \vec b^2= 25 + 144 +25 +144 + 25 -144 = 219</math>
| |
| | | |
− |
| |
− | Buch S. 112 / 14<br>
| |
− | Man weiß aus der Mittelstufe, dass der Flächeninhalt eines Parallelogramms A = gh ist. D.h. fälllt man von der Spitze von <math>\vec b</math> das Lot auf <math>\vec a</math> erhält man die Höhe h. <br>
| |
− | a steht für <math>a=|\vec a|</math> und b für <math>b=|\vec b|</math>. Es ist dann <math>A = ah</math> und h ist <math>h=b sin\alpha</math>, also <math>A=absin\alpha =ab\sqrt {1-cos\alpha^2} =\sqrt {a^2b^2-a^2b^2cos\alpha^2}=\sqrt{|\vec a|^2|\vec b|^2- (\vec a \circ \vec b)^2}</math> q.e.d.<br>
| |
− | b) <math>A=\sqrt{72\cdot 18 -0}=36</math> (Beachten Sie, dass <math>\vec a</math> und <math>\vec b</math> senkrecht zueinander sind.
| |
− |
| |
− | c)
| |
− |
| |
− |
| |
− | Buch S. 113 / 16<br>
| |
− | a) A(2;0,0), B(0;2;0), C(0;0;2) und S(0;0;0)
| |