Diskussion:M11 Skalarprodukt: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde geleert.)
 
(3 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
Buch S. 112 / 10<br>
 
Die Vektoren <math>\vec a</math> und <math>\vec b</math> stehen senkrecht aufeinander, d.h. <math>\vec a \circ \vec b = 0</math>. <br>
 
a) <math>(\vec a + \vec b)^2 =\vec a^2 + 2\vec a \circ \vec b + \vec b^2=|\vec a|^2 + |\vec b|^2=25+144=169</math><br>
 
b) <math>(\vec a + \vec b) \circ (2\vec a - \vec b)=2\vec a^2-\vec a \circ \vec b+\vec b \circ 2\vec a - \vec b^2= 2 \cdot 25 - 144 =-94</math><br>
 
c) Eine Hommage an die binomischen Formeln!<br>
 
<math>(\vec a + \vec b)^2+(\vec a - \vec b)^2+(\vec a + \vec b)(\vec a -a\vec b) = \vec a^2 + 2 \vec a \circ \vec b + \vec b^2 + \vec a^2 - 2 \vec a \circ \vec b + \vec b^2 + \vec a^2 - \vec b^2= 25 + 144 +25 +144 + 25 -144 = 219</math>
 
  
 
Buch S. 112 / 14<br>
 
Man weiß aus der Mittelstufe, dass der Flächeninhalt eines Parallelogramms A = gh ist. D.h. fälllt man von der Spitze von <math>\vec b</math> das Lot auf <math>\vec a</math> erhält man die Höhe h. <br>
 
a steht für <math>a=|\vec a|</math> und b für <math>b=|\vec b|</math>. Es ist dann <math>A = ah</math> und h ist <math>h=b sin\alpha</math>, also <math>A=absin\alpha =ab\sqrt {1-cos\alpha^2} =\sqrt {a^2b^2-a^2b^2cos\alpha^2}=\sqrt{|\vec a|^2|\vec b|^2- (\vec a \circ \vec b)^2}</math> q.e.d.<br>
 
b) <math>A=\sqrt{72\cdot 18 -0}=36</math> (Beachten Sie, dass <math>\vec a</math> und <math>\vec b</math> senkrecht zueinander sind.<br>
 
c) <math>\alpha=74,5^o, \beta=60,98^o, \gamma=44,52^o</math>, <math>h_c=\sqrt {13}, A=\frac{3}{2}\sqrt {13}, V=6\sqrt {13}</math>
 
 
 
Buch S. 113 / 16<br>
 
A(2;0,0), B(0;2;0), C(0;0;2) und S(0;0;0)<br>
 
a)  siehe Definition des Skalarprodukts <br>
 
b) <math>V_{Kugel}=\frac{32}{3}\pi ,  V_{Pyramide}=\frac{4}{3}</math>. Es ist <math>\frac{V_{Pyramide}}{V_{Kugel}}\approx 0,04=4%</math>
 

Aktuelle Version vom 1. Februar 2021, 08:48 Uhr