M10 Der Logarithmus: Unterschied zwischen den Versionen
Zeile 67: | Zeile 67: | ||
n) -1; o) -1; p) -3; q) 2; r) 0; s) 2; t) 1; u) -1; v) 2; w) 0; x) -1; y) -2 | n) -1; o) -1; p) -3; q) 2; r) 0; s) 2; t) 1; u) -1; v) 2; w) 0; x) -1; y) -2 | ||
− | 2a) 0,5; b) 0,5; c) <math>\frac{1}{3}</math>; d) <math>\frac{1}{3}</math>; e) <math>\frac{1}{5}</math>; f) <math>\frac{2}{3}</math>; g) <math>\frac{3}{2}</math>; h) | + | 2a) 0,5; b) 0,5; c) <math>\frac{1}{3}</math>; d) <math>\frac{1}{3}</math>; e) <math>\frac{1}{5}</math>; f) <math>\frac{2}{3}</math>; g) <math>\frac{3}{2}</math>; h) <math>\frac{3}{2}</math>;;<br> |
− | i) <math>\frac{9}{2}</math>; k) 0,5; l) <math>\frac{3}{2}</math>; m) <math>-\frac{3}{2}</math>; o) 2; p) - | + | i) <math>\frac{9}{2}</math>; k) 0,5; l) <math>\frac{3}{2}</math>; m) <math>-\frac{3}{2}</math>; o) 2; p) -6; q) 0 }} |
Version vom 22. März 2021, 17:05 Uhr
Die Gleichung ist ganz leicht zu lösen. Man erhält
. Dies geht immer gut, wenn der Wert auf der rechten Seite eine Potenz der Basis ist, also
hat die Lösung
,
hat die Lösung
,
hat die Lösung
.
Doch was macht man, wenn die Gleichung lautet?
Man hatte schon einmal ein ähnliches Problem. Die Gleichung hat die Lösungen
und
. Für die Gleichung
hat man dann neue Zahlen eingeführt, die Wurzeln, und die Gleichung hatte die Lösungen
.
Für die Gleichung muss man, um eine Lösung zu haben, neue Zahlen einführen, die Logarithmen bzw. den Logarithmus.
Merke:
Die Gleichung Man spricht für ![]() |
Beispiele: hat die Lösung
hat die Lösung
hat die Lösung
hat die Lösung
Merke:
Es ist
|
Merke:
Rechengesetze des Logarithmus Logarithmus eines Produkts: Logarithmus eines Quotienten: Logarithmus einer Potenz: |
Zur Begründung der Rechenregeln:
1. erhält man durch folgende Überlegung:
und
. Dann ist
, also
.
Da und
ist erhält man
.
2. erhält man durch folgende Überlegung:
und
. Dann ist
, also
.
Da und
ist erhält man
.
Beispiele:1.
2.
3.
Für Für Diese beiden Symbole findest du auch auf dem Taschenrechner. |
4.
Merke:
Basiswechsel: |