M9 Quadratische Gleichungen: Unterschied zwischen den Versionen
(→Zerlegung in Linearfaktoren) |
|||
Zeile 301: | Zeile 301: | ||
Mit der Lösungsformel bearbeite [https://www.zum.de/Faecher/freiarb/niehaves/klapp/qg_kt/qg_kt81.pdf Klapptest 3], [https://www.zum.de/Faecher/freiarb/niehaves/klapp/qg_kt/qg_kt84.pdf Klapptest 4] }} | Mit der Lösungsformel bearbeite [https://www.zum.de/Faecher/freiarb/niehaves/klapp/qg_kt/qg_kt81.pdf Klapptest 3], [https://www.zum.de/Faecher/freiarb/niehaves/klapp/qg_kt/qg_kt84.pdf Klapptest 4] }} | ||
− | |||
=Videos= | =Videos= |
Aktuelle Version vom 19. Februar 2022, 07:30 Uhr
Bei den linearen Funktionen war es nützlich die Schnittpunkte des Graphen mit den Koordinatenachsen zu bestimmen. Der Schnittpunkt mit der y-Achse war der y-Abschnitt t und mit Hilfe der Nullstelle (Schnittpunkt mit der x-Achse) konnte man leicht die Steigung mbestimmen.
Bei den quadratischen Funktionen geht dies ähnlich. Der Schnittpunkt mit der y-Achse ist durch f(0) gegeben. Die Nullstelle/Nullstellen erhält man durch Lösen der Gleichung f(x) = 0.
Bei den Übungen zu den quadratischen Funktionen hast du bei Aufgabe 1 und Aufgabe 2 gesehen, dass eine Parabel zwei Nullstellen oder keine Nullstelle haben kann. Von der Normalparabel kennst du, dass sie eine Nullstelle hat.
Um die Nullstellen zu bestimmen muss man die Lösungen der Gleichung f(x) = 0 finden.
Für eine quadratische Funktion führt dies zur Gleichung .
Merke:
Eine Gleichung der Form mit a R\{0}, b, c R heißt quadratische Gleichung: |
Inhaltsverzeichnis |
graphische Lösung
Manchmal kann man aus dem Graph die Nullstellen direkt ablesen. Man spricht dann vom graphischen Lösen der quadratischen Gleichung. Bei der quadratischen Funktion hast du folgenden Graph
Du liest hier problemlos und als Nullstellen der Funktion ab.
a) x1 = 0 und x2 = 2, y = (x-1)2-1
b) x1 = -2 und x2 = 0, y = -(x+1)2+1
Bei dem Graphen von Aufgabe 1c kann man die Nullstellen nur näherungsweise ablesen. Man sieht jedenfalls, dass x1 = 0 und x2 = 3 nicht die Nullstellen sind, sondern, dass sie etwas daneben liegen. Aus dem Graphen kann man sie dann nur ungefähr ablesen.
1a) x = -2 , b) x1 = -2 und x2 = 3 , c) x1 = -2 und x2 = 1
Von der letzten Aufgabe weißt man, dass die Gleichung die zwei Lösungen und hat. Auch hier kann man graphisch nur Näherungslösungen bestimmen.
Dies ist natürlich unbefriedigend. Man möchte ja gerne die exakten Lösungen. Also muss man eine rechnerische Lösung finden.
rechnerische Lösung
Zerlegung in Linearfaktoren
Bei der Gleichung x2 + 5x = 0 kann man x ausklammern. Es ist x2 + 5x = x(x+5), also muss man die Gleichung x(x+5)=0 lösen. Man weiß
Ein Produkt hat den Wert Null, wenn ein Faktor den Wert Null hat.
Dann sind die zwei Lösungen der Gleichung x(x+5)=0 die zwei Zahlen x1=-5 und x2=0. Damit hat die Gleichung x2 + 5x = 0 auch diese zwei Lösungen x1=-5 und x2=0.
In diesem Video wird Ausklammern und die Verwendung der binomischen Formeln aufgezeigt.Ausklammern funktioniert bei der Gleichung x2 +5x + 6 = 0 nicht!
Bei den ersten beiden Summanden könnte man x ausklammern, aber der dritte Summand 6 bleibt dann stehen. x2 +5x + 6 =x(x+5)+6 und wie soll man x(x+5)+6 = 0 lösen?
Wenn man bei der ganzen rechten Seite x ausklammert, dann erhält man und für die Gleichung hat man keinen Plan wie man sie lösen soll.
Schön wäre es, wenn man den Term x2 +5x + 6 so umformen könnte, dass x2 +5x + 6 = (x+3)(x+2) da steht. Dann hätte man wieder, dass ein Produkt 0 ist, wenn ein Faktor 0 ist. Also wären die Lösungen x1=-3 und x2=-2.
1. Man multipliziert die rechte Seite aus (x+3)(x+2)=x2+3x+2x+6=x2+5x+6 und erhält die linke Seite.
Doch wie kommt man auf so eine Zerlegung?
Zuerst schaut man sich den Summanden ohne x, also hier 6 an. Beim Ausmultiplizieren entsteht die 6 als Produkt der zwei Zahlen 2 und 3. Also schaut man welche natürliche Zahlen als Produkt 6 ergeben. Hier kommen 6·1 = 6 und 2·3=6 also die zwei Zahlenpaar 6 und 1 sowie 3 und 2 in Frage. Beim Ausmultiplizieren der Klammern sieht man auch, dass der Term mit x als Koeffizient die Summe der beide Zahlen hat, also 6+1 = 7 bzw. 3+2=5. Damit hat man (x+3)(x+2)=x2 + 5x + 6.
Um die Zerlegung von x2 + bx + c in Linearfaktoren zu finden, schaue nach natürlichen Zahlen x1 und x2, Die quadratische Gleichung x2 + bx + c = 0 hat dann die zwei Lösungen -x1 und -x2. |
Beispiele:
x2 + 7x + 6 | 1. 6 ist das Produkt aus 6 und 1 sowie 3 und 2 2. Summe: 6+1 = 7, 3+2 = 5 3. x2 + 7x + 6 =(x+1)(x+6) |
x2 - 8x + 12 | 1. 12 ist das Produkt aus 12 und 1, sowie 6 und 2, sowie 4 und 3. 2. Summe: 12+1 = 13, 6 + 2 = 8, 4+3=7 3. 2 und 6 sind die Kandidaten. Da vor 8 ein Minuszeichen steht muss man -2 und -6 nehmen. x2 - 8x + 12 =(x-2)(x-6) |
x2 -5x + 6 | 1. 6 ist das Produkt aus 6 und 1 sowie 3 und 2 2. Summe: 6+1 = 7, 3+2 = 5 3. 2 und 3 sind die Kandidaten. Da vor x aber -5 steht, muss man -3 und -2 nehmen, also x2 - 5x + 6 =(x-3)(x-2) |
x2 + x - 6 | 1. 6 ist das Produkt aus 6 und 1 sowie 2 und 3. Da nun aber hier -6 steht muss man jeweils eine Zahl mit - versehen, also (6 und -1) oder (-6 und 1) oder (-2 und 3) oder (-3 und 2). 2. Summe 6-1=5, -6+1=-5, -2+3=1, -3+2=-1, also sind -2 und 3 die passenden Zahlen. |
François Viète hat dies etwas anders herausgefunden.
Sind x1 und x2 die zwei Lösungen der Gleichung x2 + bx + c = 0, dann lässt sich der quadratische Term x2 + bx + c in Faktoren x - x1 und x - x2 zerlegen. Es ist x2 + bx + c = (x - x1)(x - x2).
Hier steht nun in der Klammer jeweils ein - Zeichen, da ja die Zahlen eingesetzt 0 ergeben!
Multipliziert man die rechte Seite aus (x - x1)(x - x2) = x2 - x·x2 - x1·x + x1·x2=x2-(x1+x2)·x+x1·x2
Der Vergleich von x2-(x1+x2)·x+x1·x2 mit x2 + bx + c liefert
b = -(x1+x2) und c = x1·x2
Satz von Vieta |
In dem Satz von Vieta wurden p und q verwendet. Dies ist allgemein so üblich, wenn in der quadratischen Gleichung der Koeffizient von x2 die Zahl 1 ist. Die quadratische Gleichung hat dann die Form x2 + px + q = 0.
1a) x1=-11, x2=2
b) x1=3, x2=10
c) x1=4, x2=-2
d) x1=-3, x2=-78
2a) x1=-3, x2=7
b) x1=-5, x2=2
c) x1=-2, x2=1
d) x1=2, x2=3
Nochmals ausführlich die Lösung für Aufgabe 2c: Mit dem Ssatz vno Vieta ist x1*x2=-2 und x1+x2=-1. Auch dies liefert durch Probieren x1=-2 und x2 = 1. |
Lösungsformel
Das Zerlegen in Linearfaktoren oder der Satz des Vieta funktionieren oft wunderbar. Allerdings muss der Koeffizient von x2 stets 1 sein. Was macht man, wenn das nicht der Fall ist?
Was ist aber, wenn man eine Gleichung x2 - 5x + 5 = 0 hat? Da kommt man mit unserem obigen Verfahren nicht weiter. Die Zahl 5 ist das Produkt der Zahlen 5 und 1. Die Summe 5+1=6. Das ist nicht -5! Was macht man nun?
Wir betrachten den Fall wobei ist. Wenn a = 0 wäre, hätten wir keine quadratische Gleichung, sondern eine lineare Gleichung.
Im folgenden verzichten wir nun darauf zu fordern. Das Beispiel x2 - 5x + 5 = 0 zeigt, dass wir auch das nicht lösen können.
Eine quadratische Funktion wird normalerweise in der Form angegeben.
Mit Hilfe der quadratischen Ergänzung bringt man den Funktionsterm in die Scheitelform
Die beiden Funktionsterme sind gleichwertig, es ist .
Für die quadratische Gleichung bedeutet dies, dass sie gleichwertig ist zur Gleichung
Division durch a (das ist erlaubt, da ist) ergibt die Gleichung
Nun löst man die Gleichung nach x auf. Man erhält dann .
Auf der linken Seite steht ein Quadrat, auf der rechten Seite ein Term. Zieht man nun auf beiden Seiten die Wurzel so erhält
vor der Wurzel bedeutet, dass sowohl die negatitve wie die positive Wurzel quadriert den Term auf der linken Seite ergibt.
Isoliert man x auf der linken Seite so erhält man
Der Indix 1,2 von x bedeutet, dass es für x zwei Werte gibt je nachdem ob vor der Wurzel ein - oder ein + steht.
Es geht jetzt nur noch darum diese Formel in eine einprägsame Form zu bringen. Dazu bringt man den Term unter der Wurzel auf den gemeinsamen Nenner 4a2 bringt, also
4a2 ist ein Quadrat, welches man aus der Wurzel herausziehen kann. Es ist also
Dies ergibt weiter
Merke:
Die Lösungen der quadratischen Gleichung ax2 + bx +c = 0 sind |
Eine Herleitung ist in diesem Video dargestellt:
Vielleicht könnt ihr es euch mit dem Lied besser merken:
Beispiele: 1. 2x2 - 32 = 0
Hier ist a = 2, b = 0 und c = -32, also , also x1 = -4 und x2 = 4.
Diese Aufgabe hätte man auch ohne Lösungsformel lösen können.
2x2 - 32 = 0 | +32 --> 2x2 = 32 | :2 --> x2 = 16 also x1 = -4 und x2 = 4
2. 5x2 + 15x = 0
5x ausklammern 5x(x + 3) = 0 liefert x1 = -3 und x2 = 0
Die Lösungsformel mit a = 5, b = 15, c = 0 liefert und x1 = -3 ( für - vor der Wurzel) und x2 = 0 (für + vor der Wurzel).
3. x2 + 10x + 25 = 0
Die 2. binomische Formel ergibt x2 + 10x + 25 = (x + 5)2, also (x + 5)2 = 0 und x = -5
Die Lösungsformel mit a = 1, b = 10, c = 25 ergibt sich
4. x2 - 11x + 30 = 0
Lösungsformel mit a = 1, b = -11, c = 30 liefert und für das - Zeichen x1 = 5 und für das + Zeichen x2 = 6
Dies hätte man auch mit der Zerlegung in Linearfaktoren erhalten. Es ist 30 = 5·6. Wegen -11 ist auch 30 = (-6)·(-5) und (-6) + (-5) = -11 hat man die Zerlegung x2 - 11x + 30 = (x - 5)(x - 6) und dieses Produkt hat den Wert 0, wenn x1 = 5 und x2 = 5 ist.
5. x2 + 9 = 0
Fortman die Gleichung um, so erhält man x2 = -9. In den reellen Zahlen gibt es keine Zahl, die quadriert -9 ist, also hat die Gleichung keine Lösung.
Lösungs
Diese fünf Beispiele zeigen, dass die Lösungsformel immer geht, die Gleichungen aber auch einfacher lösbar sind.
Bei den nächsten zwei Beispielen kommt man nur mit der Lösungsformel zum Ziel.
6. x2 - 11x - 30 = 0
Lösungsformel mit a = 1, b = -11, c = -30 liefert und und .
7. 6x2 - 11x -10 = 0
Lösungsformel mit a = 6, b = -11, c = -10 liefert und und .
8. x2 + 33 - 14x = 0
Hier bringen wir diese quadratische Gleichung erst auf die übliche Form x2 - 14x + 33 = 0. Dann ist a = 1, b = -14, c = 33 und D = (-14)2 - 4·1·33 = 64 und . Also x2 = 3 und x2 = 11.
Um die Lösungsformel richtig anzuwenden gehe folgendermaßen vor: 1. Bringe die quadratische Gleichung auf die übliche Form ax2 + bx + c = 0, also den Summand mit x2 zuerst, dann der Summand mit x und am Schluss der Summand ohne x. -Zeichen immer richtig mitnehmen! |
a) x1 = -4, x2 = 4
b) x1 = -23, x2 = 9
c) übliche Form: x2 - 12x - 64 = 0, x1 = -4, x2 = 16
d) x1 = -4, x2 = 14
e) y1 = -3,5, y2 = 14,5
f) y1 = -13, x2 = 0
a) x1 = -6,5, x2 = 3,5
b) x1 = -3, x2 = 5/3
c) x1 = , x2 =
Diskriminante
Der Term b2 - 4ac unter der Wurzel heißt Diskriminante und gibt an wie viele Lösungen die Gleichung hat. Es gibt nur eine Lösung oder zwei Lösungen, wenn b2 - 4ac ≥ 0 ist. Falls b2 - 4ac < 0 ist, dann hat die quadratische Gleichung keine Lösung, da in den reellen Zahlen unter einer Wurzel keine negative Zahl stehen darf.
b2 - 4ac ist die Diskriminante D der quadratischen Gleichung ax2 + bx + c = 0. D = b2 - 4ac |
a) a = 2, b = 0, c = -32, D = 02 - 4·2·(-32) = 256 > 0, also zwei Lösungen
b) a = 5, b = 15, c = 0, D = 152 - 4·5·0 = 225 > 0, also zwei Lösungen
c) a = 1, b = 10, c = 25, D = 102 - 4·1·25 = 0, also eine Lösung
d) a = 1, b = -11, c = 30, D = (-11)2 - 4·1·30 = 1 > 0, also zwei Lösungen
e) a = 1, b = 0, c = 9, D = 02 - 4·1·9 = -36 < 0, also keine Lösung
f) a = 1, b = -11, c = -30, D = (-11)2 - 4·1·(-30) = 241 > 0, also zwei Lösungen
D = (-4)2 - 4·2·k = 16 - 8k
Es ist D = 0 für k = 2, also hat die Gleichung für k = 2 genau eine Lösung.
Ist k > 2, so ist D < 0 und die Gleichung hat keine Lösung.
weitere Aufgaben
Falls die quadratische Gleichung ax2 + bx +c = 0 Lösungen hat, erhältst du sie Ist a = 1, dann verwendet man oft p und q statt b und c. Es ist dann b = p und c = q und falls die quadratische Gleichung x2 + px + q = 0 Lösungen hat sind sie (pq-Formel) |
Videos
Zerlegung in Linearfaktoren:
Schaut nur den Teil zu den quadratischen Gleichungen an, höhere Polynome kommen erst in der 10. Klasse.
Satz von Vieta:
Lösungsformel:
pq-Formel: Mitternachtsformel: