M11 Skalarprodukt: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
Es ist weiterhin, wenn <math>\varphi</math> der Winkel zwischen den Vektoren <math>\vec a</math> und <math>\vec b </math> ist<br> [[Datei:Skalarprodukt 1.jpg]] <math>\vec a \circ \vec b =|\vec a||\vec b|cos(\varphi)</math>}} | Es ist weiterhin, wenn <math>\varphi</math> der Winkel zwischen den Vektoren <math>\vec a</math> und <math>\vec b </math> ist<br> [[Datei:Skalarprodukt 1.jpg]] <math>\vec a \circ \vec b =|\vec a||\vec b|cos(\varphi)</math>}} | ||
− | + | <center>{{#ev:youtube |WrRVLMQPHeU|350}}</center> | |
'''Beispiele:''' <br> | '''Beispiele:''' <br> | ||
Zeile 31: | Zeile 31: | ||
2. <math>\vec a =\left ( \begin{array}{c} -2 \\\ -1 \\\ 2 \end{array}\right) </math>, <math>\vec b=\left ( \begin{array}{c} 0 \\\ 2 \\\ 1 \end{array}\right)</math>. Es ist <math>|\vec a|=3, |\vec b|=\sqrt 5, \vec a \circ \vec b = \left ( \begin{array}{c} -2 \\\ -1 \\\ 2 \end{array}\right) \circ \left ( \begin{array}{c} 0 \\\ 2 \\\ 1 \end{array}\right) = -2\cdot 0 + -1\cdot 2 + 2\cdot 1=0</math>. <br> | 2. <math>\vec a =\left ( \begin{array}{c} -2 \\\ -1 \\\ 2 \end{array}\right) </math>, <math>\vec b=\left ( \begin{array}{c} 0 \\\ 2 \\\ 1 \end{array}\right)</math>. Es ist <math>|\vec a|=3, |\vec b|=\sqrt 5, \vec a \circ \vec b = \left ( \begin{array}{c} -2 \\\ -1 \\\ 2 \end{array}\right) \circ \left ( \begin{array}{c} 0 \\\ 2 \\\ 1 \end{array}\right) = -2\cdot 0 + -1\cdot 2 + 2\cdot 1=0</math>. <br> | ||
Damit ist <math>cos \varphi = \frac{\vec a \circ \vec b}{|\vec a| \cdot |\vec b|}=\frac{0}{3\cdot \sqrt 5}=0</math>, also <math>\varphi = 90^o</math>. | Damit ist <math>cos \varphi = \frac{\vec a \circ \vec b}{|\vec a| \cdot |\vec b|}=\frac{0}{3\cdot \sqrt 5}=0</math>, also <math>\varphi = 90^o</math>. | ||
+ | |||
{{Merke|1=Haben die zwei Vektoren <math>\vec a</math> und <math>\vec b </math> gleiche Richtung, dann ist <math>\varphi = 0^o</math> und <math> cos \varphi = 1</math>. Dann ist <math>\vec a \circ \vec b = |\vec a||\vec b|</math>. | {{Merke|1=Haben die zwei Vektoren <math>\vec a</math> und <math>\vec b </math> gleiche Richtung, dann ist <math>\varphi = 0^o</math> und <math> cos \varphi = 1</math>. Dann ist <math>\vec a \circ \vec b = |\vec a||\vec b|</math>. |
Version vom 20. Januar 2021, 18:20 Uhr
In Physik hat man gelernt, dass Arbeit W das Produkt aus der Kraft F, die in Wegrichtung entlang des Weges s wirkt. Man schreibt dann W = F·s. Was macht man aber, wenn man einen Leiterwagen zieht?
Nach unserer Arbeitsdefinition muss man den Wagen so wie er abgebildet ist nach vorne ziehen. Dazu muss man sich bücken und es ist sehr unbequem. Man wird den Handgriff hochnehmen, aber dann wirkt die Kraft nicht mehr in Wegrichtung sondern ist schräg dazu. Wie macht sich das dann in der Arbeit bemerktbar?
Man löst das, indem man die Kraftkomponente Fs in Wegrichtung betrachtet und damit die Arbeit Arbeit W = Fs·s berechnet.
Fs ist die waagrechte Kraftkomponente von F in Fahrtrichtung.
In der Mathematik führt man hierzu das Skalarprodukt ein, dies wird dann in der Physik auch verwendet und man sagt dann, dass die Arbeit W das Skalarprodukt des Kraftvektors mit dem Wegvektor
ist, also
oder ohne Vektoren
.
Beispiele:
1. .
2. .
Merke:
Dies führt zur Definition des Winkels. Der Winkel ![]() |
Beispiele:
1. ,
. Es ist
.
Damit ist , also
2. ,
. Es ist
.
Damit ist , also
.
Haben die zwei Vektoren Ist insbesondere
Dies giilt auch umgekehrt. Ist das Skalarprodukt |
. Es ist k+10 = 0 für k = -10.
2. Es ist ,
,
Also sind paarweise senkrecht zueinander.
3. Es muss sein: und
Man hat also zwei Gleichungen und
.
Löst man die erste Gleichung nach auf, so ist
. Dies setzt man in die zweite Gleichung ein und erhält
.
Dies führt zu der Gleichung .
Wählt man , dann ist
und man hat den Vektor
.
steht senkrecht zu den Vektoren
.
![\left ( \begin{array}{c} -2 \\\ 2 \\\ 1 \end{array}\right) \circ \left ( \begin{array}{c} 1 \\\ 0 \\\ 2 \end{array}\right) = -2+2=0](/images/math/a/1/a/a1a0dc482339327c98eeed8b42ff2077.png)
![\left ( \begin{array}{c} -2 \\\ 2 \\\ 1 \end{array}\right) \circ \left ( \begin{array}{c} 3 \\\ 4 \\\ -2 \end{array}\right )=-6+8-2=0](/images/math/3/e/8/3e8e2234ae3df89adc92efd21bcc32b3.png)
Rechengesetze für das Skalarprodukt Für Vektoren
Beachten Sie bitte die unterschiedlichen Malzeichen |
111/1
a) liefert
b) liefert
c) liefert
d) liefert
e) 90o
f) 31o
g) 0o
h) 180o
i) 144,7o
111/2 a) .
(1) Die Gleichung q-2 = 0 hat die Lösung q = 2.
(2) Da in a2=3 ist und bei
b2=0 können die Vektoren nicht gegeneinander gerichtet sein.
Rechnerisch führt das zur Gleichung , also
oder
.
Quadriert man die letze Gleichung , dann erhält man und in der üblichen Form einer quadratischen Gleichung
, deren Diskriminante D = -84, also negativ ist. Die quadratische Gleichung hat also keine Lösung.
b) (1) q = 3, (2) (Hier nicht rechnen, sondern die Koordinaten vergleichen!)
c) (1) q = 2 , (2) keine Lösung (bei müsste a2=a3 sein.)
111/3 a) s = -2
b) s = -4 oder s = 1
![\pm 2](/images/math/3/8/f/38fe3d02ab24d43519f76510cffd9620.png)