M10 Der Logarithmus: Unterschied zwischen den Versionen
Zeile 115: | Zeile 115: | ||
<math>p = b^x</math> und <math>q = b^y</math>. Dann ist <math>p : q = b^x : b^y = b^{x-y}</math>, also <math>x - y = log_b(p : q)</math>.<br> | <math>p = b^x</math> und <math>q = b^y</math>. Dann ist <math>p : q = b^x : b^y = b^{x-y}</math>, also <math>x - y = log_b(p : q)</math>.<br> | ||
Da <math>x = log_b (p)</math> und <math>y = log_b(q)</math> ist erhält man <math>log_b(p)-log_b(q)=x-y=log_b(p: q)=\log_b(\frac{p}{q})</math>. | Da <math>x = log_b (p)</math> und <math>y = log_b(q)</math> ist erhält man <math>log_b(p)-log_b(q)=x-y=log_b(p: q)=\log_b(\frac{p}{q})</math>. | ||
+ | |||
+ | 3. Es ist <math>a^{log_a(p^r)} = p^r = (a^{log_a(p)})^r=a^{r\cdot log_a(p)}</math>. Zwei Potenzen mit gleicher Basis haben denselben Wert, wenn auch ihre Exponenten gleich sind, also <math>log_a(p^r) = r\cdot log_a(p)</math>. | ||
<center>{{#ev:youtube |gKtM31rf_7s|350}}</center> | <center>{{#ev:youtube |gKtM31rf_7s|350}}</center> | ||
Zeile 139: | Zeile 141: | ||
{{Merksatz|MERK=<center>{{#ev:youtube |ptu_0F0hNd8|350}}</center> | {{Merksatz|MERK=<center>{{#ev:youtube |ptu_0F0hNd8|350}}</center> | ||
− | Basiswechsel: <math> log_a(p) = \frac{log_b(p)}{log_b(a)}</math> }} | + | '''Basiswechsel''': <math> log_a(p) = \frac{log_b(p)}{log_b(a)}</math> }} |
Zur Begründung: <math>x = log_a(p)</math> ist Lösung der Gleichung <math>a^x = p</math>.<br> | Zur Begründung: <math>x = log_a(p)</math> ist Lösung der Gleichung <math>a^x = p</math>.<br> | ||
Zeile 146: | Zeile 148: | ||
Diese Gleichung löst man nach dem Exponenten auf. Es ist <math>x \cdot log_b(a) = log_b(p)</math>, dividiert durch den Koeffizienten von x und erhält <math> x = \frac{log_b(p)}{log_b(a)}</math>.<br> | Diese Gleichung löst man nach dem Exponenten auf. Es ist <math>x \cdot log_b(a) = log_b(p)</math>, dividiert durch den Koeffizienten von x und erhält <math> x = \frac{log_b(p)}{log_b(a)}</math>.<br> | ||
Damit hat man gezeigt, dass <math>log_a(p) = x = \frac{log_b(p)}{log_b(a)}</math> ist. | Damit hat man gezeigt, dass <math>log_a(p) = x = \frac{log_b(p)}{log_b(a)}</math> ist. | ||
+ | |||
+ | Beispiele: Auf den Taschenrechnern sind immer zwei Logarithmus-Tasten, meist eine Taste log oder lg für den Logarithmus zur Basis 10 und ln für den Logarithmus zur Basis e. <br> | ||
+ | <math>log_2(5) = \frac{lg(5)}{lg(2)}\approx 2,231928</math><br> | ||
+ | <math>log_7(2)=\frac{ln(2)}{ln(7)}\approx 0,359207</math> |
Version vom 30. März 2021, 08:18 Uhr
Die Gleichung ist ganz leicht zu lösen. Man erhält . Dies geht immer gut, wenn der Wert auf der rechten Seite eine Potenz der Basis ist, also
hat die Lösung ,
hat die Lösung ,
hat die Lösung .
Doch was macht man, wenn die Gleichung lautet?
Man hatte schon einmal ein ähnliches Problem. Die Gleichung hat die Lösungen und . Für die Gleichung hat man dann neue Zahlen eingeführt, die Wurzeln, und die Gleichung hatte die Lösungen .
Für die Gleichung muss man, um eine Lösung zu haben, neue Zahlen einführen, die Logarithmen bzw. den Logarithmus.
Merke:
Die Gleichung mit a R+ und p > 0 hat die Lösung . Man spricht für : "x ist der Logarithmus von p zur Basis a" |
Beispiele: hat die Lösung
hat die Lösung
hat die Lösung
hat die Lösung
1a)
b)
c)
d)
e)
f)
2a)
b)
c)
d)
Merke:
Es ist
|
Stelle eventuell die passende Exponentialgleichung auf!
Für log2(32) lautet die Exponentialgleichung , also x = 5
1a) 5; b) 10; c) 5; d) 1; e) 4; f) 0; g) -1; h) -3; i) -2; k) -1; l) -2; m) -3
n) -1; o) -1; p) -3; q) 2; r) 0; s) 2; t) 1; u) -1; v) 2; w) 0; x) -1; y) -2
2a) 0,5; b) 0,5; c) ; d) ; e) ; f) ; g) ; h) ;;
a)
b)
c)
d)
e)
f)
g)
h)
i)
Merke:
Rechengesetze des Logarithmus Logarithmus eines Produkts: Logarithmus eines Quotienten: Logarithmus einer Potenz: |
Zur Begründung der Rechenregeln:
1. erhält man durch folgende Überlegung:
und . Dann ist , also .
Da und ist erhält man .
2. erhält man durch folgende Überlegung:
und . Dann ist , also .
Da und ist erhält man .
3. Es ist . Zwei Potenzen mit gleicher Basis haben denselben Wert, wenn auch ihre Exponenten gleich sind, also .
Beispiele:1.
2.
3.
Für schreibt man Für schreibt man , wenn e die Eulersche Zahl e = 2, 718 281 828 459 045 235 360 287 ... ist. Diese beiden Symbole findest du auch auf dem Taschenrechner. |
4.
Nicht verwechseln! |
Merke:
Basiswechsel: |
Zur Begründung: ist Lösung der Gleichung .
Nun möchte man die Basis a durch die Basis b ersetzen. Dazu verwendet man, dass ist.
Es ist dann und die Gleichung lautet dann
Diese Gleichung löst man nach dem Exponenten auf. Es ist , dividiert durch den Koeffizienten von x und erhält .
Damit hat man gezeigt, dass ist.
Beispiele: Auf den Taschenrechnern sind immer zwei Logarithmus-Tasten, meist eine Taste log oder lg für den Logarithmus zur Basis 10 und ln für den Logarithmus zur Basis e.