Rationale Funktionen Indirekte Proportionalitaet: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „Eine Tafel Schokolade mit 24 Stücken soll auf Kinder verteilt werden. Wie viele Stückchen bekommt jedes Kind? x bezeichne die Anzahl der Kinder und y die Anzah…“) |
|||
Zeile 3: | Zeile 3: | ||
x bezeichne die Anzahl der Kinder und y die Anzahl der Schokoladenstückchen, die jedes Kind bekommt. <br> | x bezeichne die Anzahl der Kinder und y die Anzahl der Schokoladenstückchen, die jedes Kind bekommt. <br> | ||
− | {{ | + | {{Aufgaben-blau|1=1|2= |
− | + | ||
a) Vervollständige die Tabelle: http://wikis.zum.de/rsg/images/6/67/Tab-24-x.jpg | a) Vervollständige die Tabelle: http://wikis.zum.de/rsg/images/6/67/Tab-24-x.jpg | ||
Zeile 11: | Zeile 10: | ||
c) Betrachte die Produkte <math>x\cdot y</math>. Was stellst du fest? | c) Betrachte die Produkte <math>x\cdot y</math>. Was stellst du fest? | ||
}} | }} | ||
+ | |||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 42: | Zeile 42: | ||
− | {{ | + | {{Aufgaben-blau|1=2|2= |
− | + | ||
Bestimme die Definitionsmenge und die Wertemenge der Funktion <math>f:x \rightarrow \frac{24}{x}</math>. | Bestimme die Definitionsmenge und die Wertemenge der Funktion <math>f:x \rightarrow \frac{24}{x}</math>. | ||
Zeile 62: | Zeile 61: | ||
− | {{ | + | {{Aufgaben-blau|1=3|2= |
− | + | ||
a) Stelle in diesem Applet | a) Stelle in diesem Applet | ||
<ggb_applet width="604" height="484" version="4.2" ggbBase64="UEsDBBQACAAIAM+ChkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAM+ChkIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVhtj9s2DP58/RWEP21ALrH8lqRIWrQdihW4dsWuG4Z9k20lUc9vsOTEKfrjR0q241zvgq4tGlwiSyJF8iH1SL7V8zbPYC9qJcti7bCp64AokjKVxXbtNHpzvXCeP3uy2opyK+Kaw6asc67XTjD1nJMe9qYsJGWZrh13GQufifm1u0i962CRhtdLP/CvN36w2KQx99I4cABaJZ8W5TueC1XxRNwmO5HzmzLh2qy507p6OpsdDodpb31a1tvZdhtPW5U6gJ4Xau10D09xuTOlg2/EPddls3/e3tjlr2WhNC8S4QBF1chnT65WB1mk5QEOMtW7tRMxjGwn5HaHYYY+ejojoQpjrUSi5V4oVB11Tcw6rxwjxguav7JPkA3hOJDKvUxFjfhMvWi+nPuLMPLcJQtd34GylqLQnSzrbM761VZ7KQ52WXoyFtExXZZZzGlFCJfw+TN4rufChBpmGw+bKLJTrh1zfdt4tglsE1qZwKoHVjSwMoGVCdDNvVQyzsTa2fBMIYiy2NSYwKGv9DETxqVu4AQAm2BYSn5CYbTngEUdfZ+4k8A1Xxv2KMbFKEZGAXwGRp6bxgfymRnfqQm6bmS7c9Mwtxtd0I8BKfrOMPw+DH8cBq4+oW/0SChsZFXXzUWjdn5ks7cYucHXAed9V4xDhCy6Z897LLpLoNpwLmE62AtHiIbuxPyZ7xcW/Ush3rf4KKD/wyBB8XNDDNzl/IcHiUU78d1gEgUPG527Z7zSk4ptWdf+FOxXs571Vp1DoHYk220fLXJFLvpLw37AIESGiOZIViGwJTZzYgoPWAhBiF22gIjaOfhEDgH4sACSYz4YjgsX+BMY4oggxLVocO4aIgE/gNAHZpgxAEQBDLsiJp6PEmEIISqRdUZm/QiCCDv+AgJ0kHh1Tvzlox720bgHPgOfdNkcvAgiD+bEzSwgyo4W5Dsu6kHkQkSqSM5IzJaUUWMBPkWDO68qlbTgunR0ZdWQFYOjLKpGd9h140me9jjq8p54WiZ3LwewuxnBlR6L4dl0OgHtWXV2QF6tMh6LDK8Rt1QJAHueEbEYC5uy0NBXgWfHtjWvdjJRt0Jr1FLwke/5DdeifY3SqrdtTJtzeyWaJJOp5MXfWCa0BC0IwzFOVNkf40EYWStJWdbp7VFh7UD7r6hL2hDeNBx/HDh2M2w5XY4+eBqphFPNe97UG38YTh0fnmPLLmixH0LjrVA9/Nuadl0HLHXeqJdldhqqSlnoV7zSTW3uZMjNNQX1othmwmBr2B5vN8ldXLa3FlTfrvXhWAkqCuNAvH1VZmUNuCc9inLbtbFtjQx5Nki5RsY1Em6fJZkO82zpGQnTxrY1Uph261oXKevDZG5vRip7VXTO9rSpmbXTOtAUUt/YHpaoTO66UJlVeNfkMdbbUMMo8Ju0Nzt7iz03wx40c/whZlaze4W4uhN1ITJbbgVmvCkbZet/qOGrVaPEe653L4r0T7HFvfueE31qtGZFjUW7H0Uic1S04x3EnNL/F3pvR1OxrUUnzzNzWbYJMLPuuPi/GDZLva7L/E2x/4C1dc/V1ayPZ6WSWlZUwhAjn9+JU5WmUnE8DdKxHgavMIqEmAmh04SrA7zRu7I292Hc3LhP4UVVywz5FIuWdnUmcrwJgzalWzS5qGUypCw3l2x0sOliGHJN6YIy/ogMdC/NJyRx+pHiBp5VO05Xc9aVMD+K+gwms9rbMu0Nd2YzutNDLpF8r3Ez5bwlSsEFY1VmjcbXGkxMcXqtsa51JIWHMb00taRLD0ekKvMOtpHtCF0ETH7CUjqvi9Mu00icd/imoAwV6G7Tm4ffZZqKYnCXF1hKJiFIgZWt80oIu0UGxQqjN2QzKoIuL5ShtqrRFi3SIbzJ8YBo6RjJf2l/hTXkMIPWnhPn+dw0hakHZ6T6I7PnXszeH5uNEprgnkcGbC96MLdf0NgIYP8SwJdgAgy2h8mixAxKXwPSN2Hk0Qn4XSjRG9/RnCYXULpfUrSFvq6ovqWExwjPxgxj7gXd/wme/QdQSwcIoZt6JPAFAADXEAAAUEsBAhQAFAAIAAgAz4KGQtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADPgoZCoZt6JPAFAADXEAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIcGAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br> | <ggb_applet width="604" height="484" version="4.2" ggbBase64="UEsDBBQACAAIAM+ChkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAM+ChkIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVhtj9s2DP58/RWEP21ALrH8lqRIWrQdihW4dsWuG4Z9k20lUc9vsOTEKfrjR0q241zvgq4tGlwiSyJF8iH1SL7V8zbPYC9qJcti7bCp64AokjKVxXbtNHpzvXCeP3uy2opyK+Kaw6asc67XTjD1nJMe9qYsJGWZrh13GQufifm1u0i962CRhtdLP/CvN36w2KQx99I4cABaJZ8W5TueC1XxRNwmO5HzmzLh2qy507p6OpsdDodpb31a1tvZdhtPW5U6gJ4Xau10D09xuTOlg2/EPddls3/e3tjlr2WhNC8S4QBF1chnT65WB1mk5QEOMtW7tRMxjGwn5HaHYYY+ejojoQpjrUSi5V4oVB11Tcw6rxwjxguav7JPkA3hOJDKvUxFjfhMvWi+nPuLMPLcJQtd34GylqLQnSzrbM761VZ7KQ52WXoyFtExXZZZzGlFCJfw+TN4rufChBpmGw+bKLJTrh1zfdt4tglsE1qZwKoHVjSwMoGVCdDNvVQyzsTa2fBMIYiy2NSYwKGv9DETxqVu4AQAm2BYSn5CYbTngEUdfZ+4k8A1Xxv2KMbFKEZGAXwGRp6bxgfymRnfqQm6bmS7c9Mwtxtd0I8BKfrOMPw+DH8cBq4+oW/0SChsZFXXzUWjdn5ks7cYucHXAed9V4xDhCy6Z897LLpLoNpwLmE62AtHiIbuxPyZ7xcW/Ush3rf4KKD/wyBB8XNDDNzl/IcHiUU78d1gEgUPG527Z7zSk4ptWdf+FOxXs571Vp1DoHYk220fLXJFLvpLw37AIESGiOZIViGwJTZzYgoPWAhBiF22gIjaOfhEDgH4sACSYz4YjgsX+BMY4oggxLVocO4aIgE/gNAHZpgxAEQBDLsiJp6PEmEIISqRdUZm/QiCCDv+AgJ0kHh1Tvzlox720bgHPgOfdNkcvAgiD+bEzSwgyo4W5Dsu6kHkQkSqSM5IzJaUUWMBPkWDO68qlbTgunR0ZdWQFYOjLKpGd9h140me9jjq8p54WiZ3LwewuxnBlR6L4dl0OgHtWXV2QF6tMh6LDK8Rt1QJAHueEbEYC5uy0NBXgWfHtjWvdjJRt0Jr1FLwke/5DdeifY3SqrdtTJtzeyWaJJOp5MXfWCa0BC0IwzFOVNkf40EYWStJWdbp7VFh7UD7r6hL2hDeNBx/HDh2M2w5XY4+eBqphFPNe97UG38YTh0fnmPLLmixH0LjrVA9/Nuadl0HLHXeqJdldhqqSlnoV7zSTW3uZMjNNQX1othmwmBr2B5vN8ldXLa3FlTfrvXhWAkqCuNAvH1VZmUNuCc9inLbtbFtjQx5Nki5RsY1Em6fJZkO82zpGQnTxrY1Uph261oXKevDZG5vRip7VXTO9rSpmbXTOtAUUt/YHpaoTO66UJlVeNfkMdbbUMMo8Ju0Nzt7iz03wx40c/whZlaze4W4uhN1ITJbbgVmvCkbZet/qOGrVaPEe653L4r0T7HFvfueE31qtGZFjUW7H0Uic1S04x3EnNL/F3pvR1OxrUUnzzNzWbYJMLPuuPi/GDZLva7L/E2x/4C1dc/V1ayPZ6WSWlZUwhAjn9+JU5WmUnE8DdKxHgavMIqEmAmh04SrA7zRu7I292Hc3LhP4UVVywz5FIuWdnUmcrwJgzalWzS5qGUypCw3l2x0sOliGHJN6YIy/ogMdC/NJyRx+pHiBp5VO05Xc9aVMD+K+gwms9rbMu0Nd2YzutNDLpF8r3Ez5bwlSsEFY1VmjcbXGkxMcXqtsa51JIWHMb00taRLD0ekKvMOtpHtCF0ETH7CUjqvi9Mu00icd/imoAwV6G7Tm4ffZZqKYnCXF1hKJiFIgZWt80oIu0UGxQqjN2QzKoIuL5ShtqrRFi3SIbzJ8YBo6RjJf2l/hTXkMIPWnhPn+dw0hakHZ6T6I7PnXszeH5uNEprgnkcGbC96MLdf0NgIYP8SwJdgAgy2h8mixAxKXwPSN2Hk0Qn4XSjRG9/RnCYXULpfUrSFvq6ovqWExwjPxgxj7gXd/wme/QdQSwcIoZt6JPAFAADXEAAAUEsBAhQAFAAIAAgAz4KGQtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADPgoZCoZt6JPAFAADXEAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIcGAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br> |
Version vom 29. Juli 2013, 15:36 Uhr
Eine Tafel Schokolade mit 24 Stücken soll auf Kinder verteilt werden. Wie viele Stückchen bekommt jedes Kind?
x bezeichne die Anzahl der Kinder und y die Anzahl der Schokoladenstückchen, die jedes Kind bekommt.
|
In diesem Beispiel ist x eine natürliche Zahl zwischen 1 und 24.
Man kann die Funktion allgemein für alle reellen Zahlen erklären.
Der Graph dieser Funktion schaut dann so aus:
Die Funktion mit einer reellen Zahl heißt indirekte Proportionalität oder indirekt proportionale Funktion. |
Da x im Nenner steht, darf x nicht 0 sein, also ist die Definitionsmenge \{}.
Eine solche Stelle, an der der Funktionsterm nicht definiert ist und in deren Nähe die Funktionswerte nach + Unendlich oder - Unendlich gehen, heißt Polstelle.
Aus dem Graph sieht man, dass 0 als Funktionswert nicht angenommen wird, ansonsten kommen alle reelle Zahlen als y-Werte vor, also ist die Wertemenge auch \{}.
Desweiteren sieht man, dass der Graph punktsymmetrisch zum Ursprung ist.
a) m = 24
b) Jeder y-Wert der Funktion wird mit 24 multiplilziert. Der Graph von wird in y-Richtung um den Faktor 24 gestreckt.Der Funktionsterm von http://wikis.zum.de/rsg/images/0/05/F24-x.jpg ist ein Bruch, in dessen Nenner die Variable vorkommt. Kommen im Nenner der Funktion auch andere Terme mit vor, z.B. http://wikis.zum.de/rsg/images/e/eb/Bspl-rationale-funktion.jpg oder http://wikis.zum.de/rsg/images/d/dd/Bspl-rationale-funktion2.jpg dann spricht man von rationalen Funktionen.
Internetlinks:
Mehr über indirekte Proportionalität wiederholst du in diesem Lernpfad.
Alles über Hyperbeln