M10 Eigenschaften der Exponentialfunktion: Unterschied zwischen den Versionen
Zeile 32: | Zeile 32: | ||
2. Der Graph der Funktion f mit f(x) = b·a<sup>x</sup> geht stets durch den Punkt (0;b). }} | 2. Der Graph der Funktion f mit f(x) = b·a<sup>x</sup> geht stets durch den Punkt (0;b). }} | ||
− | |||
{{Aufgaben-blau|3|2=1. Drucke dieses [http://rfdz.ph-noe.ac.at/fileadmin/Mathematik_Uploads/Medienvielfalt/Medienvielfalt3/lernpfad_exponentialfunktionen/Exponentialfunktionen_NEU/sites/arbeitsblatt1_exponentialfunktion.pdf Blatt] aus und zeichne die Graphen. Übberprüfe deine Zeichnung mit GeoGebra.<br> | {{Aufgaben-blau|3|2=1. Drucke dieses [http://rfdz.ph-noe.ac.at/fileadmin/Mathematik_Uploads/Medienvielfalt/Medienvielfalt3/lernpfad_exponentialfunktionen/Exponentialfunktionen_NEU/sites/arbeitsblatt1_exponentialfunktion.pdf Blatt] aus und zeichne die Graphen. Übberprüfe deine Zeichnung mit GeoGebra.<br> | ||
Zeile 81: | Zeile 80: | ||
1 < a: Je größer a wird, desto steiler wird der Graph.<br> | 1 < a: Je größer a wird, desto steiler wird der Graph.<br> | ||
b) Der Parameter b gibt den Startwert bei x = 0 an. Veränderung von b streckt bzw. staucht den Graph der Exponentialfunktion <math>f:x \to a^x</math>, wenn 0 < b < 1 wird er nach unten in y-Richtung gestaucht, wenn 1 < b ist nach oben in y-Richtung gestreckt. Wenn b negativ ist erfolgt eine Spiegelung an der x-Achse. }} | b) Der Parameter b gibt den Startwert bei x = 0 an. Veränderung von b streckt bzw. staucht den Graph der Exponentialfunktion <math>f:x \to a^x</math>, wenn 0 < b < 1 wird er nach unten in y-Richtung gestaucht, wenn 1 < b ist nach oben in y-Richtung gestreckt. Wenn b negativ ist erfolgt eine Spiegelung an der x-Achse. }} | ||
+ | |||
+ | =Aufgaben= | ||
+ | |||
+ | {{Aufgaben-blau|5|2=Buch S. 95 / 5, 7 }} | ||
+ | |||
+ | {{Lösung versteckt|1=95/5 siehe Applet 1 nach der Lösung. | ||
+ | |||
+ | 95/7 a) Exponentialfunktion <br> | ||
+ | b) quadratische Funktion<br> | ||
+ | c) lineare Funktion<br> | ||
+ | d) Bruchfuntkion<br> | ||
+ | e) quadratische Funktion<br> | ||
+ | f) lineare Funktion<br> | ||
+ | g) Exponentialfunktion<br> | ||
+ | h) quadratische Funktion <br> | ||
+ | Graphen siehe Applet 2 nach der Lösung }} | ||
+ | |||
+ | Applet 1: <ggb_applet height="400" width="600" filename="95-5.ggb" /> | ||
+ | |||
+ | Applet 2: <ggb_applet height="400" width="600" filename="95-7.ggb" /> |
Version vom 26. Februar 2021, 10:54 Uhr
Inhaltsverzeichnis |
Die Funktion
1. Für 0 < a < 1 ist die Exponentialfunktion streng monoton fallend, für a > 1 ist sie streng monoton steigend.
2. Für a = 1 ist die Funktion konstant.
3. Der Graph der Funktion verläuft für alle Werte von a oberhalb der x-Achse.
Die Funktion
1. Wenn der Faktor b negativ ist, verläuft der Graph der Funktion unterhalb der x-Achse.
Zusammenfassung
95/4a Der Parameter a gibt das Wachstum an. Ist 0 < a < 1, so hat man eine exponentielle Abnahme, für 1 < a eine exponentielle Zunahme.
0 < a < 1: Je kleiner a ist, desto schwächer fällt der Graph. Nähert sich a dem Wert 1, dann fällt der Graph steiler.
1 < a: Je größer a wird, desto steiler wird der Graph.
Aufgaben
95/5 siehe Applet 1 nach der Lösung.
95/7 a) Exponentialfunktion
b) quadratische Funktion
c) lineare Funktion
d) Bruchfuntkion
e) quadratische Funktion
f) lineare Funktion
g) Exponentialfunktion
h) quadratische Funktion
Applet 1:
Applet 2: