M10 Grenzwert und Funktionen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „=Exponentialfunktionen= {{Merksatz|MERK=Die Exponentialfunktion <math>f: x \rightarrow a^x</math> mit a > 0 gilt: 0 < a < 1: <math>\lim_{x \to -\infty} a^x =…“)

Version vom 6. Mai 2021, 13:51 Uhr

Exponentialfunktionen

Maehnrot.jpg
Merke:

Die Exponentialfunktion f: x \rightarrow a^x mit a > 0 gilt:

0 < a < 1: \lim_{x \to -\infty} a^x = \infty und \lim_{x \to \infty} a^x = 0 Exp 1.jpg

1 < a: \lim_{x \to -\infty} a^x = 0\ \ und \lim_{x \to \infty} a^x = \infty \ \ Exp 2.jpg


Bleistift 35fach.jpg   Aufgabe 1

Buch S. 124 / 2
Buch S. 125 / 3

124/2 Man weiß von Exponentialfunktionen f:x\rightarrow a\cdot b^x, dass f(0)=a und f(1)=a\cdot b ist. Wenn a = 1 ist, dann ist f(0)=1, f(1)=b. Damit findet man leicht die Zuordnung Term - Graph.
A - k
B - f
C - m
D - h
E - g

125/3a) \lim_{x\to \infty}= \infty, die Funktion divergiert für x \to \infty
b) Die Funktion konvergiert für x \to \infty, es ist \lim_{x\to \infty}= 2 (?)
c) Die Funktion konvergiert für x \to \infty, es ist \lim_{x\to \infty}= 0
d) Die Funktion konvergiert für x \to \infty, es ist \lim_{x\to \infty}= 3 (?)
e) Die Funktion divergiert unbestimmt für x \to \infty

f) Die Funktion divergiert unbestimmt für x \to \infty


Bleistift 35fach.jpg   Aufgabe 2

Buch S. 126 / 6
Buch S. 126 / 7
Buch S. 126 / 8