Asymptoten bei rationalen Funktionen: Unterschied zwischen den Versionen
Aus RSG-Wiki
| Zeile 1: | Zeile 1: | ||
| − | + | {{Merke| | |
| + | Eine Gerade <math> y = mx + t</math> heißt Asymptote für <math>x \rightarrow \infty</math> zum Graph der Funktion <math>f</math>, wenn <math>\lim_{x \to \infty}[f(x)-(mx+t)]=0</math> ist. | ||
| + | }} | ||
| + | Anschaulich kann man es sich so vorstellen, dass der Graph und die Gerade für <math>x \rightarrow \infty</math> beliebig nahe kommen ohne sich zu schneiden. | ||
| + | |||
| + | {{Aufgabe|1= | ||
| + | Wir betrachten im folgenden Applet die Funktion <math>f:x\rightarrow 0,5\frac{x^n}{(x-1)^3}</math> für n = 1, 2, 3, 4. In dem Applet kann man mit dem Schieberegler den Exponenten von x im Zählerpolynom ändern. | ||
| + | |||
| + | Was kannst du über die Asymptoten mit Änderung des Zählerexponenten aussagen? | ||
| + | }} | ||
| + | <center> | ||
<ggb_applet width="736" height="487" version="4.0" ggbBase64="UEsDBBQACAAIANU+PEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADVPjxBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZ2Y7jthJ9nnxFQQGCmWBsiyIl2RN7gux3gMkC9CQI8pCAlmibaYlSJMotN/J4PyWfcd/mx26RlGS5N/SsSYx2kxSLtZxaWOpeftrmGexFVctCrTwy9T0QKilSqbYrr9Gbydz79OkHy60otmJdcdgUVc71ymOGUqYrz+e+8GMqJmIesQnjCzqZpz6d+AuWhNTfsDWLPYC2lk9U8R3PRV3yRJwlO5Hz50XCtRW807p8MptdXFxMe1HTotrOttv1tK1TD1BNVa+8bvIE2Z0cuqCWPPB9Mvv52+eO/USqWnOVCA+MCY18+sGD5YVUaXEBFzLVu5UXM+bBTsjtDm2KSOjBzBCVCEgpEi33osajo6W1WeelZ8m4MvsP3AyywRwPUrmXqagQn2nAWBTQKAwXhC7iOcooKimU7mhJJ3PWc1vupbhwbM3MSkQtdVFka244wp9/QuAHPjw2A3FDgEMUuS3fPfOpGwI3MDeEjoa548yRMkfDHA2jHuxlLdeZWHkbntWIoFSbCr03rGt9yITVp3twtJ48RptqeYnE1McwcZDjc99/bL4RfpnZmJ0aSUZSddW8otBeZEyj+4sM3shQ2ssk8+C6zCC8xczoDqHO7vvYScIRtCjK/tjvNYn0LjOvSnTrNxMYsfdi4nLWp8qyyw6od4a2ix4t8trkC11AuDBhTyDE3IhijPIQyAKHOADMBiAhsBCXZA6RGWOgMW4woDAHQ0co2OQI5/iLxZZZBCEyM09jzEkgKIhBSIHYnGKAmQQ2LzFHA4oUYQghHjLiSWBY0AhYhCs6B4Y6mpSMCRJSPIhrFB8AJUDNYRJDEEFk+BFmUj2aG9WRZQCRDxExDDGrMaNdNiP9HKixJurgkqps9AlESZ72U12Ugy+QGuvRseq5+nRSFB8sM74WGd4TZ8aTAHuemYywgjaF0tA7MXDPthUvdzKpz4TWeKqG3/meP+datF8jdd3LtrRJoeofqkJ/UWRNrmqApMj8QeciI6N5MGiNCzraYOONcLQRjebxjXIL3IGmFii/qOqenKfpM0NxLA2I5PcqO3xeCX5eFvLUjOXMXjlL0SSZTCVXP2GwGikGFxhuIFOu+huIhYtekaJKzw41RjC0v4iqwFK1YNOYLYYP3qqHbmce4yVz3ImQY51wk3tsMV2MP5iXh24r9Kf++NO5SewHB/FWDLZvK5mO58/qz4ssHZCwxn/BS91UtnPAylgZkz5T20zYALG1Fq/l5HxdtGcuMqjj9eJQ4sp38tdbCzpgYQhCvCu33bh2o6Uxig1UvqXxLYXfh5pMh32yCCyFHddutFQYu061zlDSW0n8XoysXY/jnSSNDfyV13rQKKmfuxUmkEzOO1OJO/Bdk6/FMX4MwZfStSSu1zoVQ24Uc3grYpazK2G4PBeVElkX9ejwpmhql8SjhEhFInNcuo0OOG6c+iPq5J6mYluJjp5ntndzsNpdfxzQ1x5bVl9XRf5M7V9gxFxRYDnrtVzWSSVLE5ewxpviXBxjL5U1x4smHZ8zaYpoJOZCQUC0QQsTuNG7orLtGdYdHE12ZiLHZgy0DULV5KKSyQC+sn0eKtV0eg9eM8BDsf4dC+IVh9mFpcHtW8IUeFbuuOkOSReM/CCqE2gst2+LtBfcic1MWwm5dPdkzlvbHPJ1jaVSY1+NrlDHvtop1pUabEpM196aHDCTg0lBO9vIdgQoYiQvMSb4iTHHdNFYxs+xV61tTusue+3kPzJNhRq05Qqjx/oAK1npArYUwsX6cLBE423VGPm9c8s1BxktBqS59/qeCImrKT4bOcO/0xnfbza10Aa/CSMWPrq40VfBzdYbZ9/P/i5fauurzlXWd5coewjB1/GI+EO5I7UrITIvM5lIfQ31tqyQn1G+A3ODb4ataREeto9gBf40hI+h/fWhegQzeNjCBMijXx/SR657OPXaplE2Fb0js9fxHAnpLVl0X8cZBojlJLozyW4Elt0F7D0Ddn3d7L77vWo3VrBUuuAxXUZH/Y1pon4jtwW1BeiVoHlHQev39aULWv/OmKWvFrMYhjfH7O3AJ28H+OBfB/wE8/RvRT59O8jTt4f8sRrQ2GIVv3u3WDec+IW8f7+s8R1Z8GMR7ovJlRZnZMD7aXJGDlm46KU0uNEnHZ/+NaLvW0YhhK8gxleW+rP6kJe60AI2L/9XgcJbi0Bh2iczDYCrS3zvEup1UAv+SajNFw61kL0b1OgbQUX/UVDNHVTxO4KK3Q7VtY7qhWg16bqqj/5oCv3JWbKTAt/lBL4VVXDZ5PDyvwoDVkEqavjoQ+J/8lVbFgo5CtQBWbUgc/jl5V87PPDEMfGu918aJXmnYu9Gf+Si+8B/36uuf+u78W0FbLcbWP/Mo6vwzcavdPaPK93/CZ7+H1BLBwjtuV/UAgcAAMQYAABQSwECFAAUAAgACADVPjxBRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANU+PEHtuV/UAgcAAMQYAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAmgcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | <ggb_applet width="736" height="487" version="4.0" ggbBase64="UEsDBBQACAAIANU+PEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADVPjxBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZ2Y7jthJ9nnxFQQGCmWBsiyIl2RN7gux3gMkC9CQI8pCAlmibaYlSJMotN/J4PyWfcd/mx26RlGS5N/SsSYx2kxSLtZxaWOpeftrmGexFVctCrTwy9T0QKilSqbYrr9Gbydz79OkHy60otmJdcdgUVc71ymOGUqYrz+e+8GMqJmIesQnjCzqZpz6d+AuWhNTfsDWLPYC2lk9U8R3PRV3yRJwlO5Hz50XCtRW807p8MptdXFxMe1HTotrOttv1tK1TD1BNVa+8bvIE2Z0cuqCWPPB9Mvv52+eO/USqWnOVCA+MCY18+sGD5YVUaXEBFzLVu5UXM+bBTsjtDm2KSOjBzBCVCEgpEi33osajo6W1WeelZ8m4MvsP3AyywRwPUrmXqagQn2nAWBTQKAwXhC7iOcooKimU7mhJJ3PWc1vupbhwbM3MSkQtdVFka244wp9/QuAHPjw2A3FDgEMUuS3fPfOpGwI3MDeEjoa548yRMkfDHA2jHuxlLdeZWHkbntWIoFSbCr03rGt9yITVp3twtJ48RptqeYnE1McwcZDjc99/bL4RfpnZmJ0aSUZSddW8otBeZEyj+4sM3shQ2ssk8+C6zCC8xczoDqHO7vvYScIRtCjK/tjvNYn0LjOvSnTrNxMYsfdi4nLWp8qyyw6od4a2ix4t8trkC11AuDBhTyDE3IhijPIQyAKHOADMBiAhsBCXZA6RGWOgMW4woDAHQ0co2OQI5/iLxZZZBCEyM09jzEkgKIhBSIHYnGKAmQQ2LzFHA4oUYQghHjLiSWBY0AhYhCs6B4Y6mpSMCRJSPIhrFB8AJUDNYRJDEEFk+BFmUj2aG9WRZQCRDxExDDGrMaNdNiP9HKixJurgkqps9AlESZ72U12Ugy+QGuvRseq5+nRSFB8sM74WGd4TZ8aTAHuemYywgjaF0tA7MXDPthUvdzKpz4TWeKqG3/meP+datF8jdd3LtrRJoeofqkJ/UWRNrmqApMj8QeciI6N5MGiNCzraYOONcLQRjebxjXIL3IGmFii/qOqenKfpM0NxLA2I5PcqO3xeCX5eFvLUjOXMXjlL0SSZTCVXP2GwGikGFxhuIFOu+huIhYtekaJKzw41RjC0v4iqwFK1YNOYLYYP3qqHbmce4yVz3ImQY51wk3tsMV2MP5iXh24r9Kf++NO5SewHB/FWDLZvK5mO58/qz4ssHZCwxn/BS91UtnPAylgZkz5T20zYALG1Fq/l5HxdtGcuMqjj9eJQ4sp38tdbCzpgYQhCvCu33bh2o6Uxig1UvqXxLYXfh5pMh32yCCyFHddutFQYu061zlDSW0n8XoysXY/jnSSNDfyV13rQKKmfuxUmkEzOO1OJO/Bdk6/FMX4MwZfStSSu1zoVQ24Uc3grYpazK2G4PBeVElkX9ejwpmhql8SjhEhFInNcuo0OOG6c+iPq5J6mYluJjp5ntndzsNpdfxzQ1x5bVl9XRf5M7V9gxFxRYDnrtVzWSSVLE5ewxpviXBxjL5U1x4smHZ8zaYpoJOZCQUC0QQsTuNG7orLtGdYdHE12ZiLHZgy0DULV5KKSyQC+sn0eKtV0eg9eM8BDsf4dC+IVh9mFpcHtW8IUeFbuuOkOSReM/CCqE2gst2+LtBfcic1MWwm5dPdkzlvbHPJ1jaVSY1+NrlDHvtop1pUabEpM196aHDCTg0lBO9vIdgQoYiQvMSb4iTHHdNFYxs+xV61tTusue+3kPzJNhRq05Qqjx/oAK1npArYUwsX6cLBE423VGPm9c8s1BxktBqS59/qeCImrKT4bOcO/0xnfbza10Aa/CSMWPrq40VfBzdYbZ9/P/i5fauurzlXWd5coewjB1/GI+EO5I7UrITIvM5lIfQ31tqyQn1G+A3ODb4ataREeto9gBf40hI+h/fWhegQzeNjCBMijXx/SR657OPXaplE2Fb0js9fxHAnpLVl0X8cZBojlJLozyW4Elt0F7D0Ddn3d7L77vWo3VrBUuuAxXUZH/Y1pon4jtwW1BeiVoHlHQev39aULWv/OmKWvFrMYhjfH7O3AJ28H+OBfB/wE8/RvRT59O8jTt4f8sRrQ2GIVv3u3WDec+IW8f7+s8R1Z8GMR7ovJlRZnZMD7aXJGDlm46KU0uNEnHZ/+NaLvW0YhhK8gxleW+rP6kJe60AI2L/9XgcJbi0Bh2iczDYCrS3zvEup1UAv+SajNFw61kL0b1OgbQUX/UVDNHVTxO4KK3Q7VtY7qhWg16bqqj/5oCv3JWbKTAt/lBL4VVXDZ5PDyvwoDVkEqavjoQ+J/8lVbFgo5CtQBWbUgc/jl5V87PPDEMfGu918aJXmnYu9Gf+Si+8B/36uuf+u78W0FbLcbWP/Mo6vwzcavdPaPK93/CZ7+H1BLBwjtuV/UAgcAAMQYAABQSwECFAAUAAgACADVPjxBRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANU+PEHtuV/UAgcAAMQYAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAmgcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | ||
| + | </center> | ||
<br><br> | <br><br> | ||
| − | [http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_04/ma_04_02/ma_04_02_02.vlu/Page/vsc/de/ma/1/mc/ma_04/ma_04_02/ma_04_02_19.vscml.html] | + | |
| + | {{Merke| | ||
| + | Bezeichnet z den Grad den Zählerpolynoms und n den Grad des Nennerpolynoms, dann gilt:<br> | ||
| + | * Ist z < n, dann ist für <math>x \rightarrow \pm \infty</math> die x-Achse <math> y = 0</math> Asymptote. | ||
| + | * Ist z = n, und ist a_n der Koeffizient von x^n im Zählerpolynom und b_n der Koeffizient von x^n im Nennerpolynom, dann ist für <math>x \rightarrow \pm \infty</math> die Gerade <math>y = \frac{a_n}{b_n}</math> Asymptote. | ||
| + | * Ist z = n+1,dann kann man mittels Polynomdivision den Bruch in einen linearen Term <math>mx+t</math> und einen Restbruch umwandeln. Der lineare Term <math>y = mx+t</math> gibt die Asymptote an. | ||
| + | * Ist z > n+1, dann hat der Graph von <math>f</math> eine asymptotische Kurve. | ||
| + | }} | ||
| + | |||
| + | [http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_04/ma_04_02/ma_04_02_02.vlu/Page/vsc/de/ma/1/mc/ma_04/ma_04_02/ma_04_02_19.vscml.html Hier] ist es nochmals zusammengefasst. | ||
<br> | <br> | ||
Zusammenfassung mit Beispielen: <br> | Zusammenfassung mit Beispielen: <br> | ||
{{#ev:youtube |tWugmTcK0HU|350}} | {{#ev:youtube |tWugmTcK0HU|350}} | ||
Version vom 28. September 2012, 07:36 Uhr
30px Merke
Eine Gerade |
Anschaulich kann man es sich so vorstellen, dass der Graph und die Gerade für
beliebig nahe kommen ohne sich zu schneiden.
30px Aufgabe
Wir betrachten im folgenden Applet die Funktion Was kannst du über die Asymptoten mit Änderung des Zählerexponenten aussagen? |
30px Merke
{{{1}}} |
Hier ist es nochmals zusammengefasst.
Zusammenfassung mit Beispielen:
heißt Asymptote für
, wenn
ist.
für n = 1, 2, 3, 4. In dem Applet kann man mit dem Schieberegler den Exponenten von x im Zählerpolynom ändern.

