M11 Rechnen mit Vektoren
Man kann mit Vektoren auch rechnen. Es gibt zwei Rechenarten für Vektoren, die Addition und die S-Mulitplikation.
Addition von Vektoren |
Rechnerisch heißt das, dass man die Koordinaten der Vektoren addiert, man spricht von koordinatenweiser Addition.
Für die Vektoren und gilt dann für den Summenvektor .
Die Koordinaten des Summenvektors sind die Summen der Koordinaten der Summanden.
Beispiele:
Für die Vektoraddition gelten auch Rechengesetze. Aus der Algebra kennt man für das Rechnen mit Buchstaben das Kommutativgesetz und das Assoziativgesetz. Diese Gesetze gelten auch für Vektoren. Das Kommutativgesetz sieht man sehr einfach bei der Konstruktion des Summenvektors:
Vektor führt zum selben Ergebnis wie .
Das Assoziativgesetz für Vektoren kann man in diesem Applet nachvollziehen.
Verändert man die Vektoren oder so ergibt sich stets der gleiche schwarze Pfeil als oder .
S-Multiplikation Durch Ziehen am Schieberegler verändert man den Wert von c. Der rote Vektor ist der Vektor, der sich durch die Multiplikation des Vektors mit der reellen Zahl c ergibt. . Jede Koordinate des Vektors wird mit c multipliziert. Man spricht von koordinatenweiser Multiplikation. |
Beispiele:
Beachte: ist der Gegenvektor zu .
Man sieht, dass das Rechnen mit Vektoren genauso geht wie das Rechnen in der Algebra mit Buchstaben und Zahlen, nur dass nun über den Buchstaben noch ein Vektorpfeil istl. Es gibt die Vektoraddition mit der man Vektoren addieren kann und die S-Multiplikation, bei der Vektoren mit reellen Zahlen multipliziert werden. Das geht genauso wie man es bisher beim Rechnen mit Zahlen und Buchstaben kennengelernt hat. |