M11 Aufgabe zu Vektoren

Aus RSG-Wiki
Version vom 9. Januar 2021, 16:21 Uhr von Karlhaberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Buch S. 93 / 1 d, e

d) \vec {AB} = \vec B-\vec A = \left ( \begin{array}{c} 4 \\\ -4 \\\ 0  \end{array}\right) - \left ( \begin{array}{c} 2 \\\ -4 \\\ -5  \end{array}\right) = \left ( \begin{array}{c} 2 \\\ 0 \\\ 5  \end{array}\right)
\vec {BA} = \vec A-\vec B = \left ( \begin{array}{c} 2 \\\ -4 \\\ -5  \end{array}\right) - \left ( \begin{array}{c} 4 \\\ -4 \\\ 0  \end{array}\right) = \left ( \begin{array}{c} -2 \\\ 0 \\\ -5  \end{array}\right)
e) \vec {AB} = \vec B-\vec A = \left ( \begin{array}{c} -4 \\\ -8 \\\ 0  \end{array}\right) - \left ( \begin{array}{c} 0 \\\ 8 \\\ -2  \end{array}\right) = \left ( \begin{array}{c} -4 \\\ -16 \\\ 2  \end{array} \right)
\vec {BA} = \vec A-\vec B = \left ( \begin{array}{c} 2 \\\ 3 \\\ -5  \end{array}\right) - \left ( \begin{array}{c} -4 \\\ -8 \\\ 0  \end{array}\right) = \left ( \begin{array}{c} 4 \\\ 16 \\\ -2  \end{array} \right)

Es ist \vec {BA} = -\vec {AB}

Buch S. 93 / 2

a) \vec {AB} = \vec B-\vec A = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right), also \vec B -  \left ( \begin{array}{c} 0 \\\ 3 \\\ 6  \end{array}\right) = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right) oder \left ( \begin{array}{c} b_1 \\\ b_2 \\\ b_3  \end{array}\right) -  \left ( \begin{array}{c} 0 \\\ 3 \\\ 6  \end{array}\right) = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right) liefert b_1 = 4, b_2 = 4, b_3=4.

b) \vec {AB} = \vec B-\vec A = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right), also  \left ( \begin{array}{c} 2 \\\ 3 \\\ -5  \end{array}\right) - \vec A = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right) oder \left ( \begin{array}{c} 2 \\\ 3 \\\ -5  \end{array}\right) -\left ( \begin{array}{c} a_1 \\\ a_2 \\\ a_3  \end{array}\right) = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right) liefert a_1 = -2, b_2 = 2, b_3=-3.

c) \left ( \begin{array}{c} b_1 \\\ 0 \\\ 7  \end{array}\right) -\left ( \begin{array}{c} 2 \\\ a_2 \\\ a_3  \end{array}\right) = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right) liefert b_1 = 6, a_2=-1, a_3=9

d) \left ( \begin{array}{c} -a \\\ a \\\ 3a  \end{array}\right) -\left ( \begin{array}{c} a \\\ -3 \\\ 2a  \end{array}\right) = \left ( \begin{array}{c} 4 \\\ 1 \\\ -2  \end{array}\right) liefert

x2-Koordinate: a + 3 = 1, also a = -2 und \vec A= \left ( \begin{array}{c} -2 \\\ -3 \\\ -6  \end{array}\right) und \vec B = \left ( \begin{array}{c} 2 \\\ -2 \\\ -6  \end{array}\right)

Buch S. 93 / 3b

Buch S. 93 / 4