M11 Verkettung von Funktionen
Die Funktion ist eine in ganz R definierte Funktion.
![Wurzel x^2+1.jpg](/images/thumb/2/2d/Wurzel_x%5E2%2B1.jpg/500px-Wurzel_x%5E2%2B1.jpg)
Am Graph sieht man, dass im Punkt (0;1) eine waagrechte Tangente y = 1 vorhanden ist.
Doch wie soll man ableiten?
Dazu müssen wir die Verknüpfung zweier Funktionen um die Verkettung erweitern. Bisher kennen wir als Verknüpfung zweier Funktiongen f und g
- die Summe f + g
- die Differenz f - g
- die Multiplikation f · g und
- die Division
Nun kommt noch die Verkettung dazu.
Merke:
Bei der Verkettung (Hintereinanderausführung) |
Für unser Beispiel betrachten wir die Funktionen
und
. Es ist
.
Setzt man nun an die Stelle von
in der Funktion
, dann hat man
und
ist die Verkettung
der Funktionen
und
, also
.
Merke:
Bei der Verkettung |
Beispiele: 1. Für die Funktionen mit
und
mit
ist
-
durch
gegeben. (In der Funktion u ersetzt man x durch den Term von v(x).)
-
durch
. (In der Funktion v ersetzt man x durch den Term von u(x).)
Natürlich vereinfacht man noch die Terme. Es ist dann und
.
Insbesondere sieht man, dass die Verkettung nicht kommutativ ist. .
2. Für die Funktionen mit
und
mit
ist
-
durch
gegeben. (In der Funktion u ersetzt man x durch den Term von v(x).)
-
durch
. (In der Funktion v ersetzt man x durch den Term von u(x).)
3. Für die Funktionen mit
und
mit
ist
-
durch
gegeben.
-
durch
.
a) und
b) und
c) und
d) und
e) und
f) und
g)
![f(x) = u(v(x))=\sqrt {\sqrt{x^2+1}^2+1}= \sqrt{x^2+2}=g(x)](/images/math/5/a/0/5a099cac956fa2c1e5bcd39eef7e6305.png)
Oftmals kann man auch eine Funktion als Verkettung zweier Funktionen
und
schreiben.
1. Die Funktion mit
ist die Verkettung
mit den Funktionen
mit
und
mit
.
2. ist
mit
und
.
3. ist
mit
-
und
oder
-
und
.
Es ist mit
a) mit
und
mit
b) mit
und
mit
c) mit
und
mit
![u](/images/math/7/b/7/7b774effe4a349c6dd82ad4f4f21d34c.png)
![u(x) = \sqrt x](/images/math/a/4/b/a4b18a9938dd15f272ab8e6ee766f6a5.png)
![v](/images/math/9/e/3/9e3669d19b675bd57058fd4664205d2a.png)
![v(x) = x-1](/images/math/d/b/e/dbe79a9f75ad0e25a38fe3cf33df56cf.png)
Man hat die Funktionen mit
und
mit
. Die Definitionsmenge für
ist Du = [-1;
[, die Definitionsmenge für
ist Dv = R.
Die Funktion mit
hat als Definitionsmenge Df =
.
Die Funktion mit
hat als Definitionsmenge Dg=[-1;
[. Hierzu muss man beachten, dass man ja x zuerst in u einsetzt. Da darf man nur Zahlen, die größer oder gleich -1 sind einsetzen. Man erhält für u(x) eine Zahl, die größer oder gleich 0 ist. Diese Zahl u(x) wird dann in v eingesetzt.
Von den Zahlen -2, , -1, 0, 1, 2, 3 gehören zur
- Definitionsmenge von f die Zahlen -2,
, 2, 3.
- Definitionsmenge von G die Zahlen -1, 0, 1, 2, 3.