M10 Der Logarithmus

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Die Gleichung 2^x = 4 ist ganz leicht zu lösen. Man erhält  x = 2. Dies geht immer gut, wenn der Wert auf der rechten Seite eine Potenz der Basis ist, also
2^x = 1024 hat die Lösung  x = 10,
5^x = 625 hat die Lösung  x = 4,
3^x = 243 hat die Lösung  x = 5.

Doch was macht man, wenn die Gleichung 2^x = 5 lautet?

Man hatte schon einmal ein ähnliches Problem. Die Gleichung x^2 = 4 hat die Lösungen <matsh>x_1 = -2</math> und x_2=2. Für die Gleichung x^2 = 5 hat man dann neue Zahlen eingeführt, die Wurzeln und die Gleichung hatte die Lösungen x_ = -\sqrt 5, x_2 = \sqrt 5.

Für die Gleichung 2^x = 5 muss man, um eine Lösung zu haben, neue Zahlen einführen, die Logarithmen bzw. den Logarithmus.


Maehnrot.jpg
Merke:

Die Gleichung a^x = p mit a \in R+ und p > 0 hat die Lösung x = log_a (p).

Man spricht für x = log_a (p): "x ist der Logarithmus von p zur Basis a"


Beispiele: 2^x = 4 hat die Lösung x = log_2(4) = 2
3^x = 243 hat die Lösung  x = =log_3(243)=5
10^x = 5 hat die Lösung  x = log_{10}(5)
2^x = 19 hat die Lösung x = log_2[18)

Maehnrot.jpg
Merke:

Es ist log_a(a^r) = r

log_a(1) = 0

Rechengesetze des Logarithmus

log_a(p\cdot q) = log_a(p) + log_a(q)

log_a(\frac{p}{q})=log_a(p) - log_a(q)

log_a(p^r) = r\cdot log_a(p)