M10 Der Logarithmus
Die Gleichung
ist ganz leicht zu lösen. Man erhält
. Dies geht immer gut, wenn der Wert auf der rechten Seite eine Potenz der Basis ist, also
hat die Lösung
,
hat die Lösung
,
hat die Lösung
.
Doch was macht man, wenn die Gleichung
lautet?
Man hatte schon einmal ein ähnliches Problem. Die Gleichung
hat die Lösungen <matsh>x_1 = -2</math> und
. Für die Gleichung
hat man dann neue Zahlen eingeführt, die Wurzeln und die Gleichung hatte die Lösungen
.
Für die Gleichung
muss man, um eine Lösung zu haben, neue Zahlen einführen, die Logarithmen bzw. den Logarithmus.
|
Merke:
Die Gleichung Man spricht für |
Beispiele:
hat die Lösung 
hat die Lösung 
hat die Lösung 
hat die Lösung
|
Merke:
Es ist
Rechengesetze des Logarithmus
|
mit a
R+ und p > 0 hat die Lösung
.

