M10 Der Logarithmus

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Die Gleichung 2^x = 4 ist ganz leicht zu lösen. Man erhält  x = 2. Dies geht immer gut, wenn der Wert auf der rechten Seite eine Potenz der Basis ist, also
2^x = 1024 hat die Lösung  x = 10,
5^x = 625 hat die Lösung  x = 4,
3^x = 243 hat die Lösung  x = 5.

Doch was macht man, wenn die Gleichung 2^x = 5 lautet?

Man hatte schon einmal ein ähnliches Problem. Die Gleichung x^2 = 4 hat die Lösungen x_1 = -2 und x_2=2. Für die Gleichung x^2 = 5 hat man dann neue Zahlen eingeführt, die Wurzeln, und die Gleichung hatte die Lösungen x_1 = -\sqrt 5, x_2 = \sqrt 5.

Für die Gleichung 2^x = 5 muss man, um eine Lösung zu haben, neue Zahlen einführen, die Logarithmen bzw. den Logarithmus.


Maehnrot.jpg
Merke:

Die Gleichung a^x = p mit a \in R+ und p > 0 hat die Lösung x = log_a (p).

Man spricht für x = log_a (p): "x ist der Logarithmus von p zur Basis a"


Beispiele: 2^x = 4 hat die Lösung x = log_2(4) = 2
3^x = 243 hat die Lösung  x = =log_3(243)=5
10^x = 5 hat die Lösung  x = log_{10}(5)
2^x = 19 hat die Lösung x = log_2[18)


Maehnrot.jpg
Merke:

Es ist log_a(a^r) = r

log_a(1) = 0

Rechengesetze des Logarithmus

Logarithmus eines Produkts: log_a(p\cdot q) = log_a(p) + log_a(q)

Logarithmus eines Quotienten: log_a(\frac{p}{q})=log_a(p) - log_a(q)

Logarithmus einer Potenz: log_a(p^r) = r\cdot log_a(p)

Zur Begründung der Rechenregeln:
1. log_a(p\cdot q) = log_a(p) + log_a(q) erhält man durch folgende Überlegung:
p = b^x und q = b^y. Dann ist p\cdot q = b^x \cdot b^y = b^{x+y}, also x + y = log_b(p\cdot q).
Da x = log_b (p) und y = log_b(q) ist erhält man log_b(p)+log_b(q)=x+y=log_b(p\cdot q).

2. log_a(\frac{p}{q}) = log_a(p) - log_a(q) erhält man durch folgende Überlegung:
p = b^x und q = b^y. Dann ist p : q = b^x : b^y = b^{x-y}, also x - y = log_b(p : q).
Da x = log_b (p) und y = log_b(q) ist erhält man log_b(p)-log_b(q)=x-y=log_b(p: q)=\log_b(\frac{p}{q}).

Beispiele:1. log_3(9a^4)=log_3(9)+log_3(a^4)=log_3(3^2)-4\cdot log_3(a) = 2 + 4log_3(a)

2. log_{10}(1000\cdot\sqrt[5]{a^2}=log_{10}(1000)+log_{10}(a^{\frac{2}{5}})=3 +\frac{2}{5}log_{10}(a)

3. log_2 (6)  log_2(48) = log_2(\frac{6}{48})=log_2(\frac{1}{8})=log_2(2^{-3})=-3

Nuvola apps kig.png   Merke

Für log_{10} schreibt man lg

Für log_e schreibt man ln, wenn e die Eulersche Zahl e = 2, 718 281 828 459 045 235 360 287 ... ist.

Diese beiden Symbole findest du auch auf dem Taschenrechner.

4. lg(\sqrt {250})-lg(\sqrt 2)+0,5lg(8)=lg({\frac{\sqrt {250} \cdot \sqrt 8}{\sqrt 2}}= lg(\sqrt{1000} =\log(10^{\frac{3}{2}})=\frac{3}{2}


Maehnrot.jpg
Merke:

Basiswechsel:  log_a(p) = \frac{log_b(p)}{log_b(a)}