Winkelberechnungen

Aus RSG-Wiki
Version vom 22. März 2020, 12:34 Uhr von Karlhaberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche
Maehnrot.jpg
Merke:

Der (spitze oder rechte) Schnittwinkel \varphi zweier Geraden g: \vec{x} = \vec{a} + r \vec{u} und h: \vec{x} = \vec{b} + r \vec{v} ist gegeben durch  cos\varphi=\vert \frac{\vec{u}\circ\vec{v}}{\vert\vec{u}\vert\cdot\vert\vec{v}\vert}\vert


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 153 das erste Beispiel.


Maehnrot.jpg
Merke:

Der (spitze oder rechte) Schnittwinkel \varphi einer Geraden g: \vec{x} = \vec{a} + r \vec{u} und einer Ebene E: \vec{n} \circ(\vec{x} - \vec{a})=0 ist gegeben durch  sin\varphi=\vert \frac{\vec{u}\circ\vec{n}}{\vert\vec{u}\vert\cdot\vert\vec{n}\vert}\vert


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 153 das zweite Beispiel


Maehnrot.jpg
Merke:

Der (spitze oder rechte) Schnittwinkel \varphi zweier Ebenen E_1: \vec{n_1} \circ(\vec{x} - \vec{a_1})=0und einer Ebene E_2: \vec{n_2} \circ(\vec{x} - \vec{a_2})=0 ist gegeben durch  cos\varphi=\vert \frac{\vec{n_1}\circ\vec{n_2}}{\vert\vec{n_1}\vert\cdot\vert\vec{n_2}\vert}\vert


Bleistift 35fach.jpg   Aufgabe

Bearbeiten Sie im Buch auf S. 153 das dritte Beispiel.



Zurück zu Abstands-_und_Winkelbestimmungen