Gebrochen-rationale Funktionen 8: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 3: Zeile 3:
 
Eine Funktion f ist eine gebrochen-rationale Funktion, wenn ihr Funktionsterm einen Bruch enthält, in dessen Nenner die Variable x vorkommt.<br>
 
Eine Funktion f ist eine gebrochen-rationale Funktion, wenn ihr Funktionsterm einen Bruch enthält, in dessen Nenner die Variable x vorkommt.<br>
 
Der Wert für x für den der Nenner Null wird heißt Definitionslücke.}}
 
Der Wert für x für den der Nenner Null wird heißt Definitionslücke.}}
 +
 +
Beispiele für Funktionsterme gebrochen-rationaler Funktionen sind <math> \frac{1}{x}, \frac{1}{x-1}, \frac{x}{x+1}, \frac{2x}{4-x}, \frac{1}{x^2}, \frac{x}{x+x^2}, \frac{2x-1}{x} ...</math>.
 +
 +
Im Nenner eines Bruches darf nie 0 stehen. Deshalb muss man diese Wert aus der Grundmenge '''Q''' (Menge der rationalen Zahlen) herausnehmen. Alle Zahlen, die man in den Term einsetzen darf stehen auch bei gebrochen-rationalen Funktionen in der Definitionsmenge '''D'''.
 +
 +
{{Aufgaben-blau||2=Gib für obigen Beispielsterme jeweils die Definitionsmenge an.}}
 +
 +
{{Lösung versteckt|1=Um die Definitionslücke zu finden musst du den Nenner gleich 0 setzen und diese Gleichung lösen. Die erhaltenen Zahlen sind aus der Grundmenge Q zu entfernen.<br>
 +
<math> \frac{1}{x}</math> hat D = Q\{0},<br>
 +
<math> \frac{1}{x-1}</math> hat D = Q \{1},<br>
 +
<math> \frac{x}{x+1}</math> hat D = Q\{-1},<br>
 +
<math> \frac{2x}{4-x}</math> hat D = Q\{4}, <br>
 +
<math> \frac{1}{x^2}</math> hat D = Q\{0},<br>
 +
<math> \frac{x}{x+x^2}</math> hat D = Q\{-1;1},<br>
 +
<math> \frac{2x-1}{x}</math> hat D = Q\{0}<br>
 +
}}
 +
 +
 +
  
 
Die Funktion der indirekten Proportionalität <math>f: x \rightarrow \frac{1}{x}</math> für <math> x \not= 0 </math> ist die einfachste gebrochen-rationale Funktion. <br>
 
Die Funktion der indirekten Proportionalität <math>f: x \rightarrow \frac{1}{x}</math> für <math> x \not= 0 </math> ist die einfachste gebrochen-rationale Funktion. <br>

Version vom 23. März 2020, 08:36 Uhr

Nuvola apps kig.png   Merke

Eine Funktion f ist eine gebrochen-rationale Funktion, wenn ihr Funktionsterm einen Bruch enthält, in dessen Nenner die Variable x vorkommt.
Der Wert für x für den der Nenner Null wird heißt Definitionslücke.

Beispiele für Funktionsterme gebrochen-rationaler Funktionen sind  \frac{1}{x}, \frac{1}{x-1}, \frac{x}{x+1}, \frac{2x}{4-x}, \frac{1}{x^2}, \frac{x}{x+x^2}, \frac{2x-1}{x} ....

Im Nenner eines Bruches darf nie 0 stehen. Deshalb muss man diese Wert aus der Grundmenge Q (Menge der rationalen Zahlen) herausnehmen. Alle Zahlen, die man in den Term einsetzen darf stehen auch bei gebrochen-rationalen Funktionen in der Definitionsmenge D.


Bleistift 35fach.jpg   Aufgabe

Gib für obigen Beispielsterme jeweils die Definitionsmenge an.

Um die Definitionslücke zu finden musst du den Nenner gleich 0 setzen und diese Gleichung lösen. Die erhaltenen Zahlen sind aus der Grundmenge Q zu entfernen.
 \frac{1}{x} hat D = Q\{0},
 \frac{1}{x-1} hat D = Q \{1},
 \frac{x}{x+1} hat D = Q\{-1},
 \frac{2x}{4-x} hat D = Q\{4},
 \frac{1}{x^2} hat D = Q\{0},
 \frac{x}{x+x^2} hat D = Q\{-1;1},

 \frac{2x-1}{x} hat D = Q\{0}



Die Funktion der indirekten Proportionalität f: x \rightarrow \frac{1}{x} für  x \not= 0 ist die einfachste gebrochen-rationale Funktion.
Ihr Graph ist eine Hyperbel und besteht aus zwei Hyperbelästen.

Graph der indirekten Proportionaliltät

An der Stelle x = 0 ist die Funktion nicht definiert. Ihr Graph nähert sich der y-Achse (x = 0) beliebig nahe an. Die y-Achse ist eine senkrechte Asymptote. Betrachtet man die Funktion für sehr große x, d.h. x \rightarrow \infty oder sehr kleine x, d.h. x \rightarrow -\infty dann nähert sich der Graph beliebig nahe an die x-Achsse an. Die x-Achse ist eine waagrechte Asymptote.

Nuvola apps kig.png   Merke

Eine Gerade heißt Asymptote zum Funktionsgraf Gf, wenn sich der Funktionsgraph beliebig nahe an die Gerade annähert ohne sie zu berühren.


Bleistift 35fach.jpg   Aufgabe

Bearbeite diesen Lernpfad.jpg Hyperbeln


Im folgenden Applet ist zuerst die Funktion  f: x\rightarrow \frac{1}{x} dargestellt. Es gibt zwei Schieberegler. Damit kannst du den Wert der Parameter b und c verändern. b ist ein Parameter, der im Nenner der Funktion als  x-b hinzugefügt wird, c wird beim Funktionsterm addiert, so dass du die Funktion  f: x\rightarrow \frac{1}{x-b}+c betrachten kannst.


  Stock-brush-2.png   Aufgabe

1. Ändere den Wert von b, indem du am Schieberegler für b ziehst.
Die Gerade x = b ist eingezeichnet.
Was kannst du über die Lage dieser Geraden aussagen?
Welche Bezeichnung hat diese Gerade noch?
2. Ändere den Wert von c, indem du am Schieberegler für c ziehst.
Die Gerade y = c ist eingezeichnet.
Was kannst du über die Lage dieser Geraden aussagen? Wie heißt diese Gerade noch?

1. Die Gerade x = b ist an der Stelle der Defintionslücke x = b. Bei Veränderung von b, ändert sich die Definitionslücke, die Gerade wandert mit.
Die Gerade x = b ist eine senkrechte Asymptote.
2. Die x-Achse wird um c in y-Richtung verschoben. Die Gerade y = c ist, da sich die Hyperbeläste für große x an sie annähern, Asymptote für  x \rightarrow \pm\infty.

Die Gerade y = c ist waagrechte Asymptote.


Ausblick

  Stock-brush-2.png   Aufgabe

Im folgenden Applet betrachten wir die Funktion f:x\rightarrow 0,5\frac{x^n}{(x-1)^3} für n = 1, 2, 3, 4. In dem Applet kann man mit dem Schieberegler den Exponenten von x im Zählerpolynom ändern.

Was kannst du über die Asymptoten mit Änderung des Zählerexponenten aussagen?

Bezeichnet z den Grad den Zählerpolynoms und n den Grad des Nennerpolynoms, dann gilt:

  • Ist z < n, dann ist für x \rightarrow \pm \infty die x-Achse  y = 0 Asymptote.
  • Ist z = n und ist a_n der Koeffizient von x^n im Zählerpolynom und b_n der Koeffizient von x^n im Nennerpolynom, dann ist für x \rightarrow \pm \infty die Gerade y = \frac{a_n}{b_n} Asymptote.
  • Ist z = n+1,dann gibt es eine schräge Asymptote.