Aufgaben zur Lagebeziehung Gerade - Ebene
S. 145/2
Die Normalform der Ebenengleichung lässt sich umformen zu 4x1 - 5x2 - 6x3 - (4-6t)=0.
a) Damit die Gerade g senkrecht zur Ebene E verläuft, ist ihr Richtungsvektor parallel zum Normalenvektor der Ebene. Beim Normalenvektor der Ebene ist x3=-6, ebenso ist beim Richtungsvektor der Geraden x3=-6. Also müssen bei beiden Vektoren x1 und x2 übereinstimmen. Damit ist r = 4 und s = -5.
b) und c) Damit die Gerade (echt) parallel zur Ebene E ist oder in der Ebene E liegt, muss der Richtungsvektor der Gerade g senkrecht zum Normalenvektor der Ebene E sein. Also ist das Skalarprodukt dieser beiden Vektoren 4r - 5s + 36 = 0, d.h. r und s müssen diese Gleichung erfüllen, z.B. (r = -9 und s = 0) oder (r=-14 und s=-4)
Für t = 3 stimmt der Stützpunkt A(1;0;3) der Ebene E mit dem Stützpunkt A(1;0;3) der Geraden g überein. Dann liegt g in der Ebene.S. 145/3
a) Damit die Gerade g auf der Ebene E senkrecht steht, muss ihr Richtungsvektor kollinear zum Normalenvektor der Ebene E sein, also ist .
b) Damit die Gerade g echt parallel zur Ebene E verläuft muss ihr Richtungsvektor senkrecht zum Normalenvektor der Ebene E sein, also ist das Skalarprodukt .
Desweiteren ragt der Verbindungsvektor der beiden Stützpunkte A und B von der Geraden g und der Ebene E aus der Ebene E heraus, die Richtungsvektoren der Ebene und der Verbindungsvektor sind nicht komplanar.
Da in dieser Aufgabe die Richtungsvektoren der Ebene nicht gegeben sind, sondern es ist der Normalenvektor vorgegeben, ist dies gleichbedeutend damit, dass der Verbindungsvektor und der Normalenvektor nicht senkrecht zueinander sind, also ist .
c) Auch hier muss wie in b) der Richtungsvektor der Geraden g senkrecht zum Normalenvektor der Ebene E sein, also ist das Skalarprodukt .
Damit die Gerade g in der Ebene E liegt, ist nun der Verbindungsvektor der beiden Stützpunkte A und B von der Geraden g und der Ebene E in der Ebene E, er ist also mit den Richtungsvektoren der Ebene komplanar.
Da aber wiederum der Normalenvektor der Ebene vorgegeben ist, ist nun der Verbindungsvektor senkrecht zum Normalenvektor , also ist hier nun .
d) Damit die Gerade g die Ebene E schneidet, darf der Richtungsvektor der Geraden g nicht senkrecht zum Normalenvektor der Ebene E sein, also muss sein. Dies beinhaltet dann auch a)!
S. 145/4
k ist Scharparameter der Ebenenschar Ek: x1 + (k-2)x2 + (2k+1)x3 = 5 - 2k .
a) (1) Eine Ebene Ek enthält den Ursprung, wenn in der Normalenform die Konstante gleich Null ist, also 5-2k = 0 ist. Somit ist k = 2,5 und die Ebene E2,5 enthält den Ursprung.
(2) Eine Ebene Ek ist parallel zur x3-Achse, wenn in der Normalenform kein x3 vorkommt, also muss der Koeffizient von x3 gleich 0 sein, d.h. 2k+1 = 0 , also k = -0,5.
(3) Eine Ebene Ek ist die x2x3-Ebene, wenn ihr Normalenvektor der Richtungsvektor der x1-Achse ist. Die x1-Achse hat als Richtungsvektor . Dies ist dann auch ein Normalenvektor der Ebene Ebene Ek. Damit müssen in der Normalenform der Ebene Ek die Koeffizienten von x2 und x3 gleich 0 sein, also k-2 = 0 und 2k+1 = 0. Dies ist gleichzeitig nicht möglich, denn dann müsste gleichzeitig k = 2 und k = -0,5 sein.
Also ist keine der Scharebenen die x2x3-Ebene.
b) Eine Ebene ist Lotebene zur x3-Achse, wenn der Richtungsvektor der x3-Achse auch ein Normalenvektor der Ebene ist. Also muss für den Normalenvektor der Ebene Ek die erste und zweite Koordinate gleich 0 sein, was nicht möglich ist, da die erste Koordinate immer 1 ist.
c) Man setzt die Koordinaten der Geraden g: in die Normalenform der Ebenengleichung ein.
Die Gleichung 1+5m + (k-2)(-2+2m) + (2k+1)(-m) = 5-2k vereinfacht man zu 0 = 0. Dies ist eine allgemeingültige Gleichung unabhängig von k, was hier bedeutet, dass die Gerade g in allen Ebenen der Schar liegt.
d) Die Gerade h hat die Gleichung h: . Die Ebene E1 hat die Gleichung x1 - x2 + 3x3 = 3.
Man setzt die Koordinaten der Geraden in die Normalenform der Ebenengleichung ein und erhält folgende Gleichung: