M11 Vektorprodukt bei der Volumenberechnung
Kalkspat hat eine besondere Form. | ![]() |
![]() |
![]() Diesen Effekt nennt man Doppelbrechung |
Der Körper

wird deshalb auch als Spat bezeichnet. Eigentlich heißt er Parallelepiped. Das ist Spat doch einfacher zu merken. Man kann sich vorstellen, dass ein Spat entsteht, wenn man einen Quader nach rechts und nach hinten deformiert.
Wie einen Quader kann man einen Spat durch Vektoren erzeugen.

Das Spatvolumen ist nun nach dem Prinzip von Cavalieri V = Gh, wobei G der Flächeninhalt der Grundfläche ist und h die Höhe des Spats. Den Flächeninhalt der Grundfläche bekommt man mit dem Vektorprodukt . Man weiß auch, dass das Vektorprodukt
ein Vektor ist, der senkrecht zur den Vektoren
und
steht.
Die Richtung der Höhe ist dieselbe wie die Richtung des Vektors , beide stehen senkrecht zur Grundfläche.
Aus dem Bild sieht man, dass ist (,wenn
ist).
Es ist also .
Ersetzt man nun G durch , dann ist
und nach der Definition des Skalarprodukts
. Da das Skalarprodukt auch negativ sein kann, nimmt man für das Volumen den Betrag, also
.
Merke:
Das Produkt Das Volumen des Spats, der von den Vektoren |
Wichtig ist, dass man einen Eckpunkt nimmt. Es ist egal welchen. Für die Berechnung des Volumens nimmt man die drei Vektoren, die von diesem Eckpunkt weggehen. Für die Berechnung des Volumens ist auch die Reihenfolge wie man die Vektoren in die Gleichung für das Spatvolumen einsetzt, egal. Da man am Ende den Betrag nimmt, kommt stets ein positives Volumen heraus. |
Mit diesen Überlegungen kann man auch eine Formel zur Berechnung von Pyramidenvolumina erhalten.
Merke:
Das Volumen einer Pyramide, die ein
|
Anmerkung: In der Mittelstufe hat man gelernt, dass das Volumen eines Quaders oder eines geraden Körpers ist. Das Volumen eines Körpers mit Spitze wie Pyramide, Kegel ist stets
. Daher
in der Pyramidenformel.
Da der Flächeninhalt mittels dem Vektorprodukt berechnet wird, ist der Flächeninhalt eines Parallelogramms und der Flächeninhalt eines Dreiecks
. Daher
in der Formel für den Tetraeder.
Zum Abschluss die beiden Pyramiden der Aufgabe 3:
|
|