Wir erweitern unser zweidimensionales xy-Koordinatensystem durch eine dritte z-Koordinate.
In Geogebra klicken Sie das Fenster "Grafik" weg und wählen im Menü "Ansicht" die Auswahl "3D Grafik" aus. Geben Sie unten in der Eingabezeile A=(1,2,3) ein. Nun wird der Punkt A eingezeichnet. Sie können nun durch Drehen die Lage des Koordinatensystems ändern und erkennen, dass die rote Achse die x-Achse, die grüne Achse die y-Achse und die blaue Achse die z-Achse ist. Es wird nun ein räumliches Koordinatensystem angezeigt.
Um mit unserem Buch konform zu sein, nennen wir die x-Koordinate nun x1-Koordinate, die y-Koordinate nun x2-Koordinate und die z-Koordinate nun x3-Koordinate.
Für unseren Punkt A(1;2;3) bedeutet dies, dass x1=1, x2=2 und x3=3 ist.
In GeoGebra ist die x1-Achse rot, die x2-Achse grün und die x3-Achse blau.
 Merke
Wir vereinbaren zum Zeichnen eines dreidimensionalen Koordinatensystems die x2x3-Ebene als Zeichenebene (Heftebene). Die x1- und x2-Achse werden normalerweise jeweils nach 2 Kästchen vom Ursprung mit 1 bezeichnet.
Die x1-Achse geht unter einem 45°-Winkel schräg nach vorne links. Eine Kästchendiagonale hat die Längeneinheit 1.
|

Aufgabe 1
Bearbeiten Sie im Buch S. 89/5.
[Lösung anzeigen][Lösung ausblenden]
a) R(2;-2;0), H(2;2;0), A(-2;2;0), E(-2;-2;0), T(2;-2;4), I(2;2;4), C(-2;2;4), U(-2;-2;4), S(0;0;7)
Das Turmvolumen ist 
b) S(4;-4;0), T(4;4;0), E(0;4;0), V(0;-4;0), I(0;-4;3), N(0;4;3)
Der Oberflächeninhalt des Prismas ist

 Merke
Der Abstand zweier Punkte P(p1;p2;p3) und Q(q1;q2;q3) ist nach dem Satz von Pythagoras
|

Aufgabe 2
1. Berechne die Länge der Strecke [OA], wobei O(0;0;0) der Ursprung ist.
2. Berechne die Länge der Strecke [AB] mit A(1;2,3) und B(4;5;6)
3. Berechne die Länge der Strecke [AC] mit A(1;2;3) und C(-1;2;-3).
4. Berechne die Länge der Strecke [AD] mit A(1;2;3) und D(-1,5;-3).
[Lösung anzeigen][Lösung ausblenden]
1. Die Strecke [OA] ist die Diagonale in einem Quader mit den Seitenlängen 1, 2 und 3.
Es ist
2. Die Strecke [AB] ist die Diagonale in einem Quader mit den Seitenlängen, 3, 3 und 3
Es ist
3. Die Strecke [AC] ist die Diagonale in einem Quader mit den Seitenlängen 2, 0 und 6, also einem Rechteck.
4. Die Strecke [AD] ist die Diagonale in einem Quader mit den Seitenlängen 2, 3 und 6, also einem Rechteck.

Um weiter mit unserem Buch konform zu sein, vereinbaren wir, dass wir ein dreidimensionales Koordinagensystem so zeichnen, dass die x1-Achse schräg nach vorne zeigt, die x2-Achse nach rechts und die x3-Achse nach oben.
Die Koordinatenebenen zerlegen den Raum in acht Teile, sogenannte Oktanten.
|
|
Bei den Oktanten I bis IV ist x3 stets positiv, bei den Oktanten V bis VIII ist 3 negativ.
I. Oktant: x1 > 0, x2 > 0, x3 > > 0
II. Oktant: x1 < 0, x2 > 0, x3 > > 0
III. Oktant: x1 < 0, x2 < 0, x3 > > 0
IV. Oktant: x1 > 0, x2 < 0, x3 > > 0
V. Oktant: x1 > 0, x2 > 0, x3 > < 0
VI. Oktant: x1 < 0, x2 > 0, x3 > < 0
VII. Oktant: x1 < 0, x2 < 0, x3 > < 0
VIII. Oktant: x1 > 0, x2 < 0, x3 > < 0
|
Durch die Achsen werden drei Ebenen festgelegt:
- x1x2-Ebene (rot),
- x1x3-Ebene (blau),
- x2x3-Ebene (gelb).
In der Zeichenebene werden durch das xy-Diagramm die Koordinaten von Punkten festgelegt. Die Zeichenebene ist eine Punktmenge von Punkten P(x;y), wobei die Ebeme durch R2={(x;y)|x, y sind reelle Zahlen} beschrieben wird.
Dies übertragen wir auf unseren neuen Raum, den Anschauungsraum. Jeder Punkt P(x1;x2;x3) ist durch seine drei Koordinaten x1, x2 und x3 festgelegt. Die Punktmenge aller Punkte des Raumes ist dann R3={(x1;x2;x3)|x1, x2, x3 sind reelle Zahlen}.

Aufgabe 3
Buch S. 88 / 1
[Lösung anzeigen][Lösung ausblenden]
F liegt in der x1x2-Ebene (x3-Koordinate ist 0) und hat die Entfernung 5 zum Ursprung.
E liegt auf der xx-Achse und hat die Entfernung 4 zum Ursprung.
R liegt auf der x3-Achse und hat die Entfernung 8 zum Ursprung.
M liegt in der x2x3-Ebene und hat die Entfernung
zum Ursprung.
A liegt in der x1x3-Ebene und hat die Entfernung
zum Ursprung.
T liegt auf der x1-Achse und hat die Entfernung 5 zum Ursprung.
A ist dem Ursprung am nächsten und R am weitesten entfernt.
Buch S. 88 / 4
[Lösung anzeigen][Lösung ausblenden]
a) Die Punkte P liegen wegen x3=0 in der x1x2-Ebene. Die x1-Koordinate ist a, die x2Koordinate ist 2a. Eretzt man nun in der x2-Koordinate a durch x1, so ist x2 = 2x1. Mit den Bezeichnungen der Mittelstufe ist dies y = 2x, also in der x1x2-Ebene die Gerade mit der Gleichung x2 = 2x1.
b) Die Punkte P liegen, da x1=0 ist, in der x2x3-Ebene. Ersetzt man hier bei x3=x2 a durch x2, so ist x3=x22. Dies ist in der x2x3-Ebene eine Normalparabel.
c) Die Punkte P liegen wegen x1=0 in der x2x3-Ebene. Ersetzt man in x3= 1/a a durch x2 so erhält man
. Dies ist in der x2x3-Ebene eine Hyperbel.
d) Die Punkte P liegen wegen x
2=0 in der x
1x
3-Ebene. Ersetzt man in x
3=2a-1 a durch x
1 so erhält man x
3=2
1-1. Dies ist in der x
1x
3-Ebene eine Gerade.
Buch S.89 / 5
[Lösung anzeigen][Lösung ausblenden]
R(2;-2;0), H(2;2;0), A(-2;2;0), E(-2;-2;0) T((2;-2;4), H(2;2;4), A(-2;2;4), E(-2;-2;4), S(0;0;7)
V = VWürfel + VPyramide = 43 + 1/2· 42 ·3=80 (VE)
b) S(4;-4;0), T(4;4,0), E(0;4;0), V(0;-4;0), I(0;-4,3), N(0;4;3)
S*(-4;4;0), T*(-4;4;0)
O = 8·8 + 2·(8·5) + 2·(0,5·(8·3))=168 (FE)
V = 0,5·8·3·8 96
Buch S. 89 / 7
[Lösung anzeigen][Lösung ausblenden]
Buch S. 89 / 9
[Lösung anzeigen][Lösung ausblenden]
a) A(0;-4;0), R(-4;0,0), L(0;24;0), T(-4;20;0), I(0;20;10)
b)

,
