M8-Rechnen mit Bruchtermen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Wir haben uns mit gebrochen-rationalen Funktionen beschäftigt. Terme dieser Funktionen sind im Normalfall Bruchterme. In der 6. Klasse hast du gelernt mit Brüchen (Zahlen) zu rechnen. Da kamen in Zähler und Nenner des Bruches nur Zahlen vor. Bei den gebrochen-rationalen Funktionen steht auch die Variable im Nenner, eventuell auch im Zähler. Daher müssen wir auch mit Brüchen arbeiten können, wenn Variable oder Parameter in Zähler und/oder Nenner vorkommen.

Zur Festigung deiner Grundkenntnisse wollen wir zuerst einiges vom Stoff der 6. und 7. Klasse wiederholen.


Bleistift 35fach.jpg   Aufgabe 1

Wiederhole auf der Seite von Mathegym die Arbeitsaufträge
1. Wiederholung 6. Klasse: Bruchrechnen

Damit du dich erinnerst wie Bruchrechnen geht, schaue dir vorher dieses Video an:

2. Wiederholung 7. Klasse: Terme
3. Wiederholung 7. Klasse: Distributivgesetz - Ausklammern und Klammern auflösen


Bleistift 35fach.jpg   Aufgabe 2

Drucke dir dieses Arbeitsblatt aus und bearbeite es.

Am Ende des letzten Arbeitsblatts steht: Mit Bruchtermen kann man wie mit Brüchen rechnen.
Beispiele sind auf dem Blatt angegeben.

Erkläre die Beispiele zum Rechnen mit Bruchtermen auf dem Arbeitsblatt unten.

[Lösung anzeigen]

Nuvola apps kig.png   Merke

Mit Bruchtermen kann man wie mit Brüchen rechnen.
Dabei kann man Brüche bzw. Bruchterme Erweitern, Kürzen, Addieren bzw. Subtrahieren, Multiplizieren und Dividieren.

Beachte: Aus Summen und Differenzen kürzen wir nicht!


Maehnrot.jpg
Merke:

1. Erweitern und Kürzen
Beim Erweitern werden Zähler und Nenner eines Bruchterms mit der gleichen Zahl bzw. mit dem gleichen Term multipliziert.
Beim Kürzen werden Zähler und Nenner eines Bruchtermt durch die gleiche Zahl bzw. den gleichen Term dividiert.

2. Addition und Subtraktion
Gleichnamie Bruchterme werden addiert bzw. subtrahiert, indem man ihre Zähler addiert bzw. subtzrahiert und den gemeinsamen Nenner beibehält.
Ungleichnamige Bruchterme muss man vor dem Addieren bzw. Subtrahieren gleichnamig machen.

3. Multiplikation und Division
Bruchterme werden multipliziert, indem man das Produkt der Zähler durch das Produkt der Nenner teilt.
Bruchterme werden dividiert, indem man den erstsen Bruchterm mit dem Kehrbruch des zweiten Bruchterms multipliziert.


Beipiele:

1. Erweitern: \frac{5}{x+1}=\frac{5x}{x(x+1)}
Der Bruch wurde mit x erweitert, d.h. Zähler und Nenner werden mit x multipliziert. Beachte dabei, dass du den Nenner x+1 in Klammern setzt, denn der ganze Nenner wird mit x multipliziert.

Kürzen:

  • \frac{5x}{x(x+1)}=\frac{5}{x+1}

Der Bruch wurde mit x gekürzt.Im Nenner steht ein Produkt, dessen 1. Faktor x ist. Man darf kürzen, wenn in Zähler und Nenner Produkte stehen.

  • \frac{5+x}{x(x+1)} kann man nicht kürzen, da im Zähler eine Summe steht, die sich nicht durch Ausklammern in ein Produkt verwandeln lässt.
  • \frac{5x+x^2}{x(x+1)}=\frac{x(5+x)}{x+1}=\frac{5+x}{x+1}

Hier kann man im Zähler x ausklammern, dann stehen in Zähler und Nenner Produkte, die jeweils x als Faktor haben. Dieses x darf man nun kürzen. Der verbleibende Bruch ist nicht weiter kürzbar! In Zähler und Nenner kommt zwar jeweils x vor, aber x steht in einer Summe und aus Summen kürzt man nicht!

  • Und wenn man im letzten Beispiel beim Ergebnis noch x ausklammert?

Man kann natürlich im Bruch \frac{5+x}{1+x} x ausklammern. Man erhält dann diesen Bruch:
\frac{5+x}{1+x}=\frac{x\cdot (\frac{5}{x}+1)}{x\cdot (\frac{1}{x}+1)} und nun kann man, da x in Zähler und Nenner jeweils in einem Produkt vorkommt, x kürzen, aber das Ergebnis \frac{\frac{5}{x}+1}{\frac{1}{x}+1} ist "kein schönes Ergebnis", da lässt man lieber \frac{5+x}{1+x} stehen und hört auf.

  • Beim Bruch \frac{5-x}{x-5)} schauen Zähler und Nenner ja fast gleich aus. Wodurch unterscheiden sie sich?

Man kann beim Zählerterm -1 ausklammern und hat dann 5 - x = -(-5 + x) (Distributivgesetz!) und 5 - x = -(-5 + x) = -(x - 5) (Kommutativgesetz!).
Nun steht in der Klammer derselbe Term wie im Nenner.
Der Nenner ist auf natürliche Weise ein Produkt, es ist nämlich x - 5 = 1·(x - 5). Deshalb kann man nun den gemeinsamen Faktor (x - 5) kürzen. Also \frac{5-x}{x-5}=\frac{-(x-5)}{1\cdot (x-5)}=\frac{-1}{1}=-1

Start hand.svg Übung

a) Darf man \frac{5}{5x} kürzen?

b) Darf man \frac{x-5}{5x} kürzen?

c) Darf man \frac{x^2}{5x} kürzen?

d) Darf man \frac{2-x^2}{2-x} kürzen?

e) Darf man \frac{4-x^2}{2-x} kürzen?

f) Darf man \frac{2-x}{x-2} kürzen?

prüfen!

[Lösung anzeigen]

2. Addition und Subtraktion: \frac{17}{x+1}-\frac{11}{x+1}=\frac{17-11}{x+1}=\frac{6}{x+1}
Die Brüche sind gleichnamig, dann kann man gleich die Zähler addieren bzw. subtrahieren.

\frac{17}{x}-\frac{11}{x+2}=\frac{17(x+2)}{x(x+2)}-\frac{11x}{x(x+2)}=\frac{17(x+2)-11x}{x(x+2)}=\frac{17x+34-11x}{x(x+2)}=\frac{6x+34}{x(x+2)}
Hier muss man für die zwei Brüche erst einen gleichen Nenner finden. Dazu wird der erste Bruch wird mit x+2 (=Nenner des 2. Bruches) erweitert, der zweite Bruch mit x (=Nenner des 1. Bruches). Wenn man gleiche Nenner hat, dann kann man die Zähler addieren bzw. subtrahieren und zusammenfassen bzw. vereinfachen. Im Nenner lässt man das Produkt stehen!

3. Multiplikation: \frac{x}{x-2}\cdot \frac{x-3}{x+1}=\frac{x(x-3)}{(x-2)(x+1)}=\frac{x^2-3x}{(x-2)(x+1)}
Beim Multiplizieren werden die Zähler und die Nenner jeweils miteinander multipliziert. Den Zähler vereinfacht man noch. Im Nenner lässt man das Produkt stehen.

Division: \frac{x}{x-2}: \frac{x-3}{x+1}=\frac{x}{x-2}\cdot \frac{x+1}{x-3}=\frac{x(x+1)}{(x-2)(x-3)}=\frac{x^2+x}{(x-2)(x-3)}
Beim zweiten Bruch wird der Kehrbruch gebildet, indem man Zähler und Nenner vertauscht. Der Zähler des Bruches wird zum Nenner des Kehrbruches, der Nenner des Bruches wird zum Zähler des Kehrbruches. Dann wird der 1. Bruch mit dem Kehrbruch des 2. Bruches multiplliziert, der Zähler vereinfacht und im Nenner bleibt das Produkt stehen.


In diesem Video wird alles nochmal zusammengefasst:

Bruchgleichungen am Ende des Videos kommen für uns erst später. Das ist dann unser nächstes Thema.


Bleistift 35fach.jpg   Aufgabe 3

Erweitern:
1. Erweitere jeden der fünf Bruchterme \frac{1}{x}, \frac{6}{x}, \frac{x-1}{x}, \frac{1}{2-x}, \frac{x}{x^2-1} mit
 a) \quad 2 \qquad b) \quad -1 \qquad c) \quad x \qquad d) \quad x^2 \qquad e) \quad 2-x \qquad f) \quad 1-x^2

2. Erweitere jeweils auf den in der in den eckigen Klammern angegebenen Nenner und gib den Erweiterungsfaktor an.
Gib auch die Definitionsmenge an.
a) \quad \frac{4}{15} \quad [60xy] \qquad b) \quad \frac{x}{x-y} \quad [2(y-x)] \qquad  c) \quad \frac{a}{a-b} \quad [b(a-b)(a+b)] \qquad d) \quad -1 \quad [a+b] \qquad e) \quad ab \quad [ab^3] \qquad
f) \quad -\frac{2}{3} \quad [-6b] \qquad g) \quad \frac{4y}{y+x} \quad [-x(x+y)] \qquad h)\quad x \quad [x(1-x)] \qquad i) \quad 2 \quad [x+3] \qquad j) \quad xy \quad [x^2y^5] \qquad
k) \quad \frac{1}{a-b} \quad [b-a]

Kürzen:
3. Kürze jeden der Brüche soweit, dass er in der einfachsten Form da steht. Gib jeweils an womit du gekürzt hast. Gib auch die Definitionsmenge an. Lass die Nenner als Produkt stehen!
a) \quad \frac{4x}{6x^2} \qquad b)\quad \frac{x(x-4)}{x^3(x-4)} \qquad c)\quad \frac{x-5}{5-x} \qquad d)\quad \frac{4x}{4} \qquad e)\quad \frac{4}{4x} \qquad f)\quad \frac{-4x}{x} \qquad g)\quad \frac{x \cdot 2x}{8x^2}
h)\quad \frac{x(x-1)}{x^2(1-x)} \qquad i)\quad \frac{2(9x+6)}{6(3x+2)} \qquad j)\quad \frac{(3x-6)(8-2x)}{(4+x)(x-2)} \qquad k)\quad \frac{4x^2}{4x} \qquad l)\quad \frac{25(x+5)}{50(-x-5)}
m)\quad \frac{324(x+y)}{-18x} \qquad n)\quad \frac{x^2(30-5x)(x^2-x)}{15x(x-6)(x-1)} \qquad o)\quad \frac{(7-x)(x-1)x^2}{x(x+1)(x-7)} \qquad p)\quad \frac{3(x-4)(x+4)}{6x-24}
q)\quad \frac{180(y-9)(3-y)}{216(9-y)(y-3)} \qquad r)\quad \frac{4x-8}{16x-32} \qquad s)\quad \frac{12x^2 - 30x}{2x-10}

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 4

1. Addiere beziehungsweise subtrahiere. Gib die Definitionsmenge an.
a)\quad \frac{2}{x} + 1 \qquad b)\quad \frac{x}{2} + \frac{2}{x} \qquad c)\quad \frac{3}{x+1} - \frac{2}{x+1} \qquad d)\quad \frac{2}{2x+2} + \frac{6}{2x+2} \qquad e)\quad \frac{1}{x}+\frac{x}{2} \qquad f)\quad \frac{5-x}{1+x}+\frac{3x-3}{1+x}
g)\quad\frac{1}{x-1}-\frac{1}{x} \qquad h)\quad \frac{7x-4}{2x}-\frac{2x+1}{x} \qquad i)\quad \frac{1}{y}+\frac{1+y}{1-y}\qquad j)\quad \frac{1-x}{x}-\frac{1-x^2}{x^2}+\frac{1}{x} \qquad k)\quad \frac{(x+0,5)^2}{0,5x}-2x
l)\quad \frac{2,5}{x+1}-\frac{1,5}{1+x}\qquad m)\quad \frac{1}{(1+x)(1-x)}+\frac{1}{1+x}\qquad  n)\quad \frac{1}{(1+x)(1-x)}-\frac{1}{1+x}\qquad o)\quad \frac{x^2}{x+1}+\frac{x}{x+1}
p)\quad \frac{1}{x+3} + 2

2. Vereinfache jeden Term so weit als möglich. Gib die Definitionsmenge an. Lass die Nenner als Produkt stehen!
a)\quad 0,5x \cdot \frac{2}{x} \qquad  b)\quad 0,5x : \frac{2}{x} \qquad c) \quad \frac{(x-2)(2+x)}{2x}:\frac{5x+10}{4x}  \qquad d) \quad \frac{1}{x}:(-\frac{1}{x^2}) \qquad e)\quad \frac{x^3(1-x)}{x} \cdot \frac{(2x)^2}{x-1}
f)  \quad \frac{x-x^2}{8}:\frac{x-x^2}{8} \qquad g) \quad (\frac{1}{x} - \frac{x}{2})\cdot 2x \qquad h) \quad (\frac{1}{x} + \frac{x}{2}): \frac{2+x^2}{2^2} \qquad
i) \quad (\frac{1}{x+1}-\frac{2}{x}):(x+2) \qquad j) \quad (\frac{x-2}{x}-\frac{x}{x-2}) \cdot 0,25x

3. Gegeben sind die fünf Terme T_1(a)=a+1, \quad T_2(a)=\frac{a}{a-1}, \quad T_3(a)=\frac{a+1}{a}, \quad T_4(a)=\frac{a^2}{(1+a)(1-a)}, \quad T_5(a)=\frac{1}{a}
Berechne und vereinfache so weit als möglich:
a) \quad T_1(a) \cdot T_4(a) \qquad b) \quad T_2(a) : T_4(a) \qquad c) \quad T_3(a) - T_5(a) \qquad d) \quad T_2(a) + T_4(a) \qquad
e) \quad T_1(a) : T_3(a) \qquad f) \quad T_1(a) : T_3(a) - a \qquad g)\quad [T_1(a) \cdot T_2(a)] :T_3(a)

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 5

Bearbeite auf der Seite von Mathegym die Arbeitsaufträge
1. Bruchrechnen 2
2. Bruchrechnen 3



Das waren jetzt Aufgaben nur zum Einüben und Lernen wie man es richtig macht. Nun kommen ein paar Anwendungsaufgaben.


Bleistift 35fach.jpg   Aufgabe 6

Bestimme einen Term für den Flächeninhalt der dunkel getönten Figur und berechne den Anteil am Flächeninhalt der Gesamtfigur:
a) Trapez 1.jpg

b) Quadrat 1.jpg

c) Trapez 2.jpg

[Lösung anzeigen]


Und nun noch ein paar Aufgaben zum Umformen gebrochen-rationaler Terme:


Bleistift 35fach.jpg   Aufgabe 7

a) Erkläre (1) \frac{x+6}{x}=a+\frac{6}{x} und (2) \frac{x}{x+3}=\frac{x+3-3}{x+3}=frac{(x+3)-3}{x+3}=1-\frac{3}{x+3} .
b) Schreibe die vier Bruchterme \frac{x+4}{4}, \frac{x^2-1}{x}, \frac{x+2}{x+1}, \frac{x+1}{x+2} als Summe bzw. Differenz.
c) Finde heraus, welche der 12 Terme äquivalent sind.
(1) x+\frac{1}{x^2}, (2) x^2+\frac{1}{x}, (3) \frac{x}{x+1}, (4) \frac{x+2}{x+1}, (5) 1+\frac{1}{x}, (6) 1-\frac{1}{x+1}
(7) \frac{x^2+1}{x}, (8) x+\frac{1}{x}, (9) \frac{x^3+1}{x^2}, (10) \frac{x^3+1}{x}, (11) \frac{x^2+x}{(x+1)^2}, (12) \frac{x^4+x^2}{x^3}


[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 8

Hier noch ein paar Klapptest zum Distributivgesetz (Ausklammern und Ausmultiplizieren):
Drucke dir den Klapptest aus, falte ihn entlang der Linie, rechne auf der linken Seite und vergleiche deine Lösung mit der angegebenen Lösung auf der umgeklappten rechten Seite.
Ausmultiplzieren: Klapptest 1, Klapptest 2, Klapptest 3
Ausklammern: Klapptest 1
Online-Übungen zum Ausklammern: Übung 1, Übung 2