M9 Potenzen mit rationalen Exponenten

Aus RSG-Wiki
Wechseln zu: Navigation, Suche


Maehnrot.jpg
Merke:

Für die allgemeine Wurzel \sqrt[n]{a} kann man auch eine Potenz a^{\frac{1}{n}} schreiben. Es ist für a \in R_0^+, n \in N \ {1}

\sqrt[n]{a}=a^{\frac{1}{n}}

Weiter ist \sqrt[n]{a^m}=a^{\frac{m}{n}}

Insbesondere ist \sqrt[n]{a^n}=a^{\frac{n}{n}}=a^1=a

Beispiele:

27^{\frac{1}{3}} = \sqrt[3]{27} = 3
8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt [3]{64}=4
512^{\frac{1}{9}} = \sqrt[9]{512} = 2
625^{\frac{1}{4}} = \sqrt[4]{625} = 5
625^{-\frac{1}{4}} = \sqrt[4]{625^{-1}} = \sqrt[4]{\frac{1}{625}}=\frac{1}{5}
256^{\frac{3}{8}} = \sqrt[8]{256^3} = \sqrt[8]{(2^8)^3}=\sqrt[8]{2^{24}}=\sqrt[8]{(2^3)^8}=2^3=8
256^{0,375}=256^{\frac{3}{8}} =8

30px   Merke

Für a^{\frac{m}{n}} hat man zwei mögliche Wurzelschreibweisen:

a^{\frac{m}{n}}=\sqrt[n]{a^m} oder a^{\frac{m}{n}}=(\sqrt [n]{a})^m.
30px   Merke

Im Exponent kann nun ein Bruch stehen.
Auch dann gelten die bisher bekannten Potenzgesetze:
a^{\frac{m}{n}}\cdot a^{\frac{p}{q}}=a^{\frac{m}{n}+\frac{p}{q}}
a^{\frac{m}{n}}: a^{\frac{p}{q}}=a^{\frac{m}{n}-\frac{p}{q}}
a^{\frac{m}{n}}\cdot b^{\frac{m}{n}}=(ab)^{\frac{m}{n}}
a^{\frac{m}{n}}: b^{\frac{m}{n}}=(a:b)^{\frac{m}{n}}
\left ( a^{\frac{m}{n}} \right ) ^{\frac{p}{q}}=a^{\frac{m}{n}\cdot\frac{p}{q}}=a^{\frac{mp}{nq}}




Sind r und s rationale Zahlen, dann schreibt es sich einfacher


a^r \cdot a^s = a^{r+s}
a^r : a^s = a^{r-s}
a^r \cdot b^r = (ab)^r
a^r : b^r = (a:b)^r
(a^r)^s = a^{r\cdot s}


30px   Aufgabe 1

Schaue dir die Beispiele im Buch auf S. 114 in der unteren Hälfte und auf S. 115 an.

Beispiele:

Vereinfache so weit als möglich:
\sqrt 5 \cdot \sqrt [3]{5}=5^{\frac{1}{2}}\cdot 5^{\frac{1}{3}}=5^{\frac{1}{2}+\frac{1}{3}}=5^{\frac{5}{6}}=\sqrt[6]{5^5}\approx 3,82
6^{\frac{1}{2}}: 6^{\frac{1}{3}}=6^{\frac{1}{2}-\frac{1}{3}}=6^{\frac{1}{6}}=\sqrt[6]{6}\approx 1,35
4^{\frac{1}{3}}\cdot 2^{\frac{1}{3}}=8^{\frac{1}{3}}=\sqrt[3]{8}=2
28^{\frac{1}{3}}: 3,5^{\frac{1}{3}}=8^{\frac{1}{3}}=\sqrt[3]{8}=2
7^{2,25}: 7^{1,25}=7^{2,25-1,25}=7^1 =7
\sqrt 5 \cdot \sqrt [3]{25}=5^{\frac{1}{2}}\cdot 5^{\frac{2}{3}}=5^{\frac{1}{2}+\frac{2}{3}}=5^{\frac{7}{6}}=\sqrt[6]{5^7}=5\cdot\sqrt[6]{5}\approx 6,54

Radiziere so weit als möglich (teilweises Radizieren)
\sqrt [5]{3072} = \sqrt [5]{3\cdot 1024}=\sqrt [5]{3\cdot 4^5}=4\cdot \sqrt[5]{3}\approx4,98
\sqrt[6]{640}=\sqrt [6]{10\cdot 2^6}=2\sqrt [6]{10}\approx 2,94


30px   Aufgabe 2

Schaue dir dieses Video an und mache die Rechnungen mit.


30px   Merke

Noch ein paar Tipps bevor es ans Rechnen geht!

Wenn ein Minuszeichen im Exponenten steht, dann beachte, dass a^{-r}=\left ( \frac{1}{a} \right )^r ist.

Bei der Einführung der rationalen Exponenten ist a^{\frac{m}{n}}=\sqrt [n]{a^m}=(\sqrt [n] {a})^m. Hier sieht man, dass der Nenner n des Exponenten für die Wurzel zuständig ist und der Zähler m potenziert.
Man hat auch zwei Möglichkeiten a^{\frac{m}{n}} zu berechnen:
1. a^{\frac{m}{n}} = \sqrt [n]{a^m}, d.h. es wird zuerst die Basis mit m potenziert und dann die m-te Wurzel gezogen.
2. a^{\frac{m}{n}} =(\sqrt [n] {a})^m, d.h. man zieht zuerst aus der Basis die n-te Wurzel und potenziert dann.

Am Beispiel 81^{\frac{3}{4}} sieht man, dass oft der zweite Weg der günstigere ist:
1. 81^{\frac{3}{4}}=\sqrt[4]{81^3}=\sqrt[4]{531441} = 27 Hier hilft nur noch der Taschenrechner, das ist im Kopf nicht machbar!
2. 81^{\frac{3}{4}}=(\sqrt[4]{81})^3 = 3^3 = 27 Hier blieben die Zahlen klein und überschaubar.


Wenn der Term z.B. 79^{\frac{3}{4}} ist, dann weiß man, dass 79 eine Primzahl ist und es ist keine Wurzel möglich. Dann lässt man den Term auch gleich als Ergebnis 79^{\frac{3}{4}} stehen.
Man kann auch noch die Schreibweise ändern 79^{\frac{3}{4}}=\sqrt[4]{79^3} = \sqrt[4]{493039}, das bringt aber nichts. Einzig einen Näherungswert mit dem Taschenrechner berechnen ist eventuell sinnvoll 79^{\frac{3}{4}} \approx 26,5.


30px   Aufgabe 3

Berechne ohne Taschenrechner.
a) 81^{\frac{1}{4}}; 216^{\frac{1}{3}}; 25^{\frac{3}{2}}; 32^{\frac{3}{5}}; 0,25^2

b) 10000^{-\frac{1}{4} }; 512^{\frac{2}{3} }; 4^{-2,5}; 1024^{1,1}; 343^{\frac{2}{3}}

c) 0,25^{\frac{3}{2}}; 0,008^{-\frac{2}{3}}; \left ( \frac{1}{9}\right )^{\frac{3}{2}}; \left ( -\frac{1}{27} \right )^{\frac{2}{3}}; 0,01^3

d) -\left ( \frac{27}{64}\right) ^{\frac{1}{3}}; \left ( \frac{27}{64}\right) ^{-\frac{1}{3}};   \left ( \frac{36}{49}\right) ^{-0,5}; - \left ( \frac{81}{256}\right) ^{-0,25}; -64^{\frac{1}{3}}; \left (- \frac{16}{625} \right )^{0,75}

a) ) 81^{\frac{1}{4}} = \sqrt [4]{3^4}=3
216^{\frac{1}{3}}=\sqrt [3]{6^3}=6
25^{\frac{3}{2}}=(\sqrt {25})^3=5^3=125
32^{\frac{3}{5}}=(\sqrt[5]{2^5})^3=2^3=8
0,25^2=0,0625

b) Es ist oft sinnvoll zuerst die Wurzel zu ziehen (Nenner) und dann zu Potenzieren (Zähler).
10000^{-\frac{1}{4}}=\left ( \frac{1}{10000} \right )^{\frac{1}{4}}=\sqrt [4]{\frac{1}{10^4}}=\frac{1}{10}
512^{\frac{2}{3}}=(\sqrt [3] {512}^2=8^2=64
4^{-2,5}=4^{-\frac{5}{2}}=\left( \frac{1}{4} \right )^{\frac{5}{2}}=\left ( \frac{1}{2} \right )^5=\frac{1}{32}
1024^{1,1}=(2^10)^{\frac{11}{10}}=2^{11}=2048
343^{\frac{2}{3}}=(7^3)^{\frac{2}{3}}=7^2=49

c) Auch hier zuerst (mit den Nenner) radizieren und dann (mit dem Zähler) potenzieren.
0,25^{\frac{3}{2}}=0,5^3=0,125
0,008^{-\frac{2}{3}}=0,2^{-2}=(\frac{1}{5})^{-2}=25
\left ( \frac{1}{9}\right )^{\frac{3}{2}}=\left ( \frac{1}{3} \right )^2=\frac{1}{9}
\left ( -\frac{1}{27} \right )^{\frac{2}{3}}=\left ( \frac{1}{3} \right )^2 = \frac{1}{9}
0,01^3=0,000001

d) -\left ( \frac{27}{64}\right) ^{\frac{1}{3}}=- \sqrt[3]{\frac{27}{64}}=-\frac{3}{4}
\left ( \frac{27}{64}\right) ^{-\frac{1}{3}}=\left ( \frac{64}{27}\right) ^{\frac{1}{3}}=\sqrt [3]{\frac{64}{27}}=\frac{4}{3}
\left ( \frac{36}{49}\right) ^{-0,5}=\left ( \frac{49}{36}\right) ^{0,5}=\sqrt { \frac{49}{36}}=\frac{7}{6}
- \left ( \frac{81}{256}\right) ^{-0,25}= - \left ( \frac{256}{81}\right) ^{\frac{1}{4}}=-\sqrt[4]{\frac{256}{81}}=-\frac{4}{3}
-64^{\frac{1}{3}}=-\sqrt[3]{64}=-4

\left (- \frac{16}{625} \right )^{0,75}=\left ( -\frac{16}{625} \right )^{\frac{3}{4}}=\sqrt[4]{ -\frac{16}{625}} kann man nicht vereinfachen, da bei einer 4. Wurzel (geraden Wurzel) der Radikand nicht negativ sein darf!


30px   Aufgabe 4

Buch S. 116 / 2, 3

Tipps: Dezimalzahlen in Brüche umwandeln!
Wenn möglich die Brüche im Exponenten kürzen! Es ist \frac{4}{6}=\frac{2}{3} und damit kann man vielleicht leichter weitermachen.

116/2 a) \sqrt 6; \sqrt[3]{12}; \sqrt [4]{8}; \sqrt [3]{0,0625};\sqrt [5] {5}; \sqrt 2; \sqrt {0,5}; 0,0625

b)  0,5; 0,25; \sqrt 2; 125; \frac{1}{9}; 25; 1; 36

c) \sqrt [3] {a}; \sqrt [4] {b^3};\sqrt [4]{\frac{1}{c^3}}; \sqrt [5]{\frac{1}{d^2}}; \sqrt[5]{e^4}; \sqrt[5]{\frac{1}{f^{13}}}; \sqrt [4]{g}; \sqrt [5]{h^{36}}

116/3 a) 2^{\frac{4}{5}}
b) 2^{\frac{4}{5}}
c) 0,2^{\frac{1}{3}}=5^{-\frac{1}{3}} - Die Basis soll eine natürliche Zahl sein!
d) \left ( \frac{1}{40} \right)^{\frac{1}{12}}=40^{-\frac{1}{12}}
Hier kann man das Ergebnis noch teilweise radizieren. Es ist 40 = 2^3 \cdot 5, also 40^{-\frac{1}{12}}=(2^3 \cdot 5)^{-\frac{1}{12}}=2^{-\frac{3}{12}}\cdot 5^{-\frac{1}{12}}=2^{-\frac{1}{4}}\cdot 5^{-\frac{1}{12}}
e) 2^{\frac{5}{4}}

f) 3^{\frac{1}{2}}=3^{0,5}


30px   Aufgabe 5

Teilweises Radizieren: Buch S. 116 / 6

a) 54 = 2\cdot 27 = 2 \cdot 3^3. Damit ist \sqrt [3]{54}=\sqrt [3]{3^3\cdot 2}=3\sqrt [3]{2}
b) 480 = 32\cdot 15 = 2^5 \cdot 15. Damit ist \sqrt [5]{480}=2\sqrt [5]{15}
c) 320 = 64\cdot 5 = 2^6 \cdot 5 Damit ist \sqrt[3]{320}=\sqrt[3]{2^6\cdot 5}=2^2\cdot \sqrt[3]{5}=4\sqrt[3]{5}
d)  1250 = 625\cdot 2=5^4 \cdot 2. Damit ist \sqrt [4]{1250}=\sqrt [4]{5^4\cdot 2}=5\sqrt[4]{2}
e) 1083 = 3\cdot 361=3\cdot 19^2. Damit ist \sqrt {1083}=\sqrt {19^2\cdot 3}=19\sqrt 3

f) 7776=32\cdot 243=2^5 \cdot 3^5. Damit ist \sqrt [4]{7776}=\sqrt [4]{2^5\cdot 3^5}=2\cdot3\cdot\sqrt[5]{2\cdot 3}=6\sqrt[4]{6}


30px   Aufgabe 6

Und nun geht es zum Üben der Potenzgesetze: Buch S. 116 / 7

a) 3^{\frac{1}{2}}\cdot 3^{\frac{1}{3}}=3^{\frac{3+2}{6}}=3^{\frac{5}{6}}=\sqrt[6]{3^5}=\sqrt[6]{243};
2^{\frac{3}{5}}\cdot 2^{-\frac{4}{5}}=2^{\frac{3-4}{5}}=2^{-\frac{1}{5}}=\sqrt[5]{0,5}
... = 125^{\frac{2}{3}}=5^2=25
... = a^{\frac{1}{4}+\frac{1}{12}}=a^{\frac{4}{12}}=a^{\frac{1}{3}}=\sqrt [3]{a}

b) 27^{\frac{5}{3}}:27^2 =27^{\frac{5}{3}-2}=27^{-\frac{1}{3}}=3^{-1}=\frac{1}{3}
81^{1,5}:81^{1,25}=81^{1,5-1,25}=81^{0,25}=81^{\frac{1}{4}}=\sqrt [4]{3^4}=3
... = 16^{0,75-1,25}=16^{-0,5}=4^{-1}=\frac{1}{4}=0,25
... = b^{\frac{3}{2}} : b^{\frac{3}{6}}=b^{1,5-0,5}=b

c) \left ( 32^{\frac{10}{3}} \right )^{\frac{3}{5}}=32^{\frac{10}{3}\cdot \frac{3}{5}}=32^{\frac{10\cdot 3}{3\cdot 5}}=32^2= 1024
... = 64^{\frac{1\cdot 21}{114\cdot 4}}=64^{\frac{3}{8}}=\left ( 2^6 \right )^{\frac{3}{8}}=2^{6\cdot \frac{3}{8}}=2^{\frac{9}{4}}=\sqrt [4]{2^9}=\sqrt [4]{512}
... =  243^{1,1\cdot frac{2}{11}}=\left ( 3^5 \right)^{\frac{2,2}{11}}=3^{5\cdot \frac{1}{5}}=3
... = a^{\frac{3}{4}}=\sqrt[4]{a^3} - in der Klammer steht eine Wurzel und Wurzelziehen und Quadrieren heben sich auf!

d) 4^{\frac{2}{3}}\cdot 2^{\frac{2}{3}}=(4\cdot 2)^{\frac{2}{3}}=8^{\frac{2}{3}}=2^2=4
32^{0,75}:2^{0,75}=16^{\frac{3}{4}}=2^3 = 8
3^{-\frac{1}{2}}\cdot \left ( \frac{2}{3} \right )^{-\frac{1}{2}}=2^{-\frac{1}{2}}=\frac{1}{\sqrt 2}
a^{\frac{4}{3}}\cdot(a^2)^{\frac{4}{3}}=a^(a^3)^{\frac{4}{3}}=a^{3\cdot \frac{4}{3}}=a^4

e) \sqrt [3]{4} \cdot \sqrt [4]{4} =4^{\frac{1}{3}+\frac{1}{4}}=4^{\frac{7}{12}}=(2^2)^{\frac{7}{12}}=2^{2\cdot \frac{7}{12}} =2^{\frac{7}{6}}=\sqrt [6]{2^7}=\sqrt [6]{128}
... = 7^{-\frac{3}{10}}
... =  1
... =  b^{\frac{7}{6}}

f) ... = \sqrt [3]{18}=18^{\frac{1}{3}}
... =  \sqrt [5]{243} = 3
... =  \sqrt [4]{16}=2
... =  1 - es ist stets a^0 = 1

g) \sqrt {\sqrt [3]{6}}=\left ( 6^{\frac{1}{3}} \right ) ^{\frac{1}{2}}=6^{\frac{1}{3}\cdot \frac{1}{2}}=6^{\frac{1}{6}}=\sqrt [6]{6}
... = 512^{\frac{1}{9}}=(2^9)^\frac{\frac{1}{9}}=2^{\frac{9}{9}}=2
... =  (2^5)^{\frac{1}{20}}=2^{5\cdot \frac{1}{20}}=2^{\frac{1}{4}}=\sqrt [4]{2}

... = (a^{12})^{\frac{1}{12}}=a^{12\cdot \frac{1}{12}}=a


30px   Aufgabe 7

Und nun noch ein paar Anwendungsaufgaben: Buch S. 117 / 9, 11

117/9
a) Ein Kubikmeterwürfel hat das Volumen V = 1 m3. Ein Würfel der doppeltes Volumen hat hat das Volumen Vneu = 2 m3 und die Seitenlänge b = \sqrt [3]{2} m \approx 1,26

b) TR liefert b \approx 1,260

c) ---

d) 117-9d.jpg

e) In Aufgabe a) wird die Seitenlänge a = 1m zu Grunde gelegt und man rechnet die Seitenlänge des neuen Altars aus.
Bei b) wird die Gleichung x3 = 2, die sich algebraisch als Lösung ergibt nach x aufgelöst und man erhält die Seitenlänge des "doppelten Kubikmeterwürfels".
Bei d) führt die Frage nach dem Schnittpunkt auf die Gleichung x3 = 2, die man in b) schon gelöst hat.

Allgemein kann man die Problemstellung lösen. Der "alte Altar" hat das Volumen V = a3. Der neue Altar mit Seitenlänge b soll doppeltes Volumen haben, also V = b3 = 2 · a3. Dies führt zur Gleichung b3 = 2 · a3 und zur Lösung b = \sqrt [3] {2} \cdot a.

117 /11
a) 117--11a.jpg
b) 117--11b.jpg

Die Werte stimmen näherungsweise überein.