Ph10-Wellen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche


Du hast kennengelernt, wie Wellen entstehen und was eine Welle ist.

Inhaltsverzeichnis

 [Verbergen

Wiederholung

Bleistift 35fach.jpg   Aufgabe 1

Schau dir zu Wiederholung diese Videos an.


1. Was ist eine Welle?
2. Wird durch eine Welle Materie und Energie transportiert? Nenne Beispiel hierfür.


3. Nenne Größen, die eine Welle beschreiben.
4. Welche Arten von Wellen gibt es?

[Lösung anzeigen]

Nuvola apps kig.png   Merke

Eine Welle ist eine Schwingung, die sich periodisch räumlich und zeitlich ausbreitet.

Reflexion von Wellen - stehende Welle

In diesem Video mit der Wellenmaschine wird die Entstehung einer stehenden Welle erklärt. Eine Wellenmaschine erzeugt und demonstriert die Ausbreitung von Wellen.


Bleistift 35fach.jpg   Aufgabe 2

1. Wie entsteht eine stehende Welle?
2. Wie wird die gegenlaufende Welle erzeugt?
3. Welche Arten von Reflexionen gibt es?

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 3

Die Reflexion von Wellen am festen und losen Ende wird in diesem Video erklärt.

1. Schaue dir die ersten 8,5 Minuten des Videos an. Dort wird erklärt, wie eine Störung (ein Wellenberg) reflektiert wird.
2. Beispiele ein loses und festes Ende.
3. Notiere dir, was bei der Reflexion an einem losen bzw. festen Ende eines Wellenberges bzw. einer Welle passiert.
4. Wieso entsteht bei der Reflexion am losen Ende kein Gangunterschied und bei der Reflexion am festen Ende ein Gangunterschied von \Delta s=\frac{\lambda}{2}? Wie entsteht der Gangunterschied bei der Reflexion am festen Ende?

[Lösung anzeigen]


Maehnrot.jpg
Merke:

1. Kommt eine Welle bei ihrer Ausbreitung an ein loses Ende des Ausbreitungsmediums, dann wird die Welle reflektiert. Die reflektierte Welle läuft in die Gegenrichtung zurück und hat gleiche Amplitude, gleiche Frequenz und gleiche Wellenlänge wie die ankommende Welle. Ankommende und reflektierte Welle haben keinen Gangunterschied. Bei der Reflexion entsteht keine Phasenverschiebung.
2. Kommt eine Welle bei ihrer Ausbreitung an ein festes Ende des Ausbreitungsmediums, dann wird die Welle reflektiert. Die reflektierte Welle läuft in die Gegenrichtung zurück und hat gleiche Amplitude, gleiche Frequenz und gleiche Wellenlänge wie die ankommende Welle. Ankommende und reflektierte Welle haben einen Gangunterschied \Delta s = \frac{\lambda}{2}. Bei der Reflexion entsteht eine Phasenverschiebung von \pi.

Die Reflexion am losen und festen Ende und das Entstehen einer stehenden Welle ist im Rest des Videos von Aufgabe 3 ganz ausführlich erklärt. Wer will kann sich das Video gerne zu Ende anschauen.


Wie entstehen stehende Wellen. Was passiert, wenn zwei gegeneinanderlaufende Wellen gleicher Frequenz aufeinander treffen?

Treffen zwei gegeneinanderlaufende Störungen (Wellen) aufeinander so überlagern sie sich an diesem Ort.

Standing waves1.gif

An diesem Ort addieren sich ihre Amplituden und ergeben dort eine neue Schwingung, deren Auslenkung sich durch die Addition der Auslenkungen der einzelnen Störungen (Wellen) ergibt.

Die Überlagerung der zwei Wellen an einem Ort kann man durch die Schwingungen für diesen Ortspunkt darstellen.
An einem Ort wird der Punkt durch eine Welle zu einer Sinusschwingung (grün) angeregt. Gleichzeitig kommt an diesem Ort eine zweite Welle an, die den Punkt auch zu einer Sinusschwingung (rot) anregt. Die Summe der beiden Schwingungen ist die dargestellte blaue Schwingung, die durch Addition der Einzelschwingungen entsteht.


Mit dem Schieberegler kannst du die zweite Schwingung verändern, so dass der durch sie verursache Schwingungszustands des Ortspunktes nicht mehr synchron zur ersten grünen Schwingung ist, sondern um \varphi phasenverschoben.


Bleistift 35fach.jpg   Aufgabe 4

Verändere mit dem Schieberegler den Wert von \varphi.
1. Wie entsteht die blaue Kurve?
2. Was stellst du für die Amplitude der blauen Überlagerungsschwingung fest?
3. Was kannst du für die drei Schwingungen (grün, rot, blau) aussagen, wenn \varphi=3,14 ist?

[Lösung anzeigen]


Nuvola apps kig.png   Merke

An einem Ort überlagern sich zwei Wellen so, dass sie den Ortspunkt zu einer Schwingung anregen, die sich als Addition der Einzelschwingungen der einzelen Wellen ergibt.


Bleistift 35fach.jpg   Aufgabe 5

Schaue dir nun dieses Videos an.


Welche besonderen Punkte bilden sich bei einer stehenden Welle aus?
Was passiert bei diesen Punkten?

[Lösung anzeigen]

Knoten und Bäuche sieht man sehr schön bei der Schwingung des Federwurms und der Gummischnur.

In den folgenden Videos wird die Tonerzeugung bei Musikinstrumenten erklärt.

Flöte Orgel Gitarre, Geige

Zum Schluss noch ein Video von Schülern einer 10. Klasse


Bleistift 35fach.jpg   Aufgabe 6

Man spricht umgangssprachlich davon, dass Musikinstrumente Schwingungen erzeugen. Wieso ist es richtiger zu sagen, dass sie Wellen erzeugen?

[Lösung anzeigen]

Interferenz von Wellen

Nuvola apps edu science.png   Versuch

Du hast an deinem PC zwei Lautsprecher? Die Lage der Lautsprecher kannst du verändern?
Wenn du das hast, dann kannst du folgenden Versuch machen.
1. Schalte die Lautsprecher an.
2. Öffne in einem neuen Tab diese Seite und lass dir einen reinen Ton z.B. der Frequenz f = 440 Hz erzeugen.
3. Nun gehe im Abstand von ca. 1-2 m quer und parallel zu den Lautsprechern. Was hörst du?
4. Stelle wenn möglich die Lautsprecher näher zusammen oder weiter auseinander. Was ändert sich?
5. Ändere die Frequenz des eingestellten Tons. Was stellst du fest?

[Lösung anzeigen]

Wie kommen diese Lautstärkeschwankungen zustande?

An dem Ort an dem du stehst kommen zwei Wellen an. Von jedem Lautsprecher eine. Je nachdem wie sie bei dir ankommen kann folgendes passieren.

Nuvola apps kig.png   Merke

Zwei Wellen überlagern sich in einem Punkt so, dass sich ihre Auslenkungen addieren.

Die Überlagerung zweier oder mehrerer Wellen heißt Interferenz.

Die Interferenz zweier Kreiswellen kann man auch schön an Wasserwellen beobachten.

Um zu verstehen wie die Interferenzbilder entstehen, betrachten wir zwei Wellen, die sich in einem Punkt A treffen.
Wir betrachten also in einem Punkt zwei ankommende Wellen und unterscheiden drei Fälle.
1. Die zwei Wellen kommen gleichphasig an, d.h. an deinem Ort kommen zwei Sinuswellen im jeweils gleichen Zustand an.
In diesem Applet kommt eine rote und eine grüne Sinusschwingung - die beiden Wellen liegen praktisch in dem Punkt aufeinander - an und überlagern sich im Punkt A zu der blauen Schwingung. Mit Hilfe des Schiebereglers kannst du die Wellen fortschreiten lassen und siehst die überlagerte Welle bzw. die Schwingung am Punkt A, die sich dann weiter fortsetzt.

Man sieht, dass am Punkt A sich die beiden Wellen so überlagern,sich ihre Auslenkungen addieren und die Summenwelle maximale Amplitude hat. Man spricht von konstruktiver Interferenz.
Da an diesem Ort die Wellenbewegung maximal ist, spricht man von einem Interferenmaximum.

2. Die zwei Wellen kommen gegenphasig an, d.h. an deinem Ort kommt eine Sinuswelle und eine Minus-Sinuswelle an. Die zwei Wellen haben Gangunterschied \frac{\lambda}{2} bzw. Phasenunterschied \pi.

Man sieht, dass die zwei Wellen gegenphasig ankommen. Auf jeden "positiven" Bauch der einen Welle kommt ein "negativer" Bauch der anderen Welle. Die Überlagerungswelle zeigt keinen Ausschlag. Ihre Amplitude ist 0. Man spricht von destuktiver Interferenz.
Dan an diesem Ort die Wellenbewegung Null, also minimal ist, spricht man von einem Interferenzminimum.

3. Kommen die Wellen irgendwie bei dir an, dann überlagern sie sich auch zu einer Interferenzwelle.

Man sieht, dass sich eine Welle ergibt, deren Amplitude kleiner als bei der konstruktiven Interferenz ist.


Bleistift 35fach.jpg   Aufgabe 7

Schaue dir das Video an.


1. Was versteht man unter konstruktiver bzw. destruktiver Interferenz?
2. Wie groß ist der Gangunterschied bei konstruktiver Interferenz bzw. bei destruktiver Interferenz?
3. Woran erkennt man beim Interferenzmuster von Wasserwellen konstruktive und destruktive Interferenz?
4. Nenne Beispiele für die Anwendung destruktiver Interferenz.

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 8

Erkläre den anfangs durchgeführten Versuch mit dem Ton an deinen zwei Lautsprechern.

[Lösung anzeigen]


Nuvola apps edu science.png   Versuch

Führe auf dieser Seite das Simulationsexperiment durch. Wähler hierzu im Menü Interferenz aus.
1. Was erkennst du im Interferenzbild?
2. Wie entstehen im Interferenzbild helle und dunkle Stellen?
3. Was passiert auf der Mittelsenkrechten zu den Auftreffpunkten der beiden Wassertropfen?
4. Was passiert unter einem 25°-Winkel gegenüber der Mittelsenkrechten zu den beiden Auftreffpunkten der Tropfen?

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 9

Bearbeite die Aufgaben auf Seite 1 und Seite 2


Bleistift 35fach.jpg   Aufgabe 10

Bearbeite die Aufgabe auf dieser Seite.

Der Doppelspaltversuch

Bei Wasserwellen kann man mit zwei Erregern synchron zwei Wellen erzeugen.

Bei Licht hat man Probleme damit. Man hat bei Licht nie zwei Erreger, die genau synchron Wellen aussenden. Man kann aber zwei synchrone Wellen erzeugen, indem man eine ebene Wellenfront auf einen Doppelspalt sendet. Sind die Spalte des Doppelspalts eng genug dann man nach ihnen zwei Kreiswellen, die sich überlagern.

Das Phänomen der Interfenz zweier Wellen tritt also auch bei Lichtwellen auf und zeigt an der Projektionsfläche ein Interferenzmuster.
Wie entsteht dieses Interferenzmuster?

Egal ob Wasser- oder Lichtwellen man sieht bei beiden Interfenzen das gleiche Interferenzmuster. Bei Wasserwellen nimmt man einfach eine parallele Ebene zu den Erregern der zwei Wasserwellen und sieht dort Punkte wo sich hell und dunkel abwechseln und graue Bereiche. Beim Laser entsprechen die roten Punkte den sich abwechselnden hell-dunkel Punkten des Wassers und die dunklen Punkte den grauen Bereichen.

Im folgenden Bild ist ein Doppelspalt zu sehen von dem aus zwei Wellen ausgehen.

Gangunterschied.png

An dem Punkt an dem sich die zwei Wellen treffen haben sie einen Gangunterschied \Delta s.
Ist der Gangunterschied ein Vielfaches von \lambda, also \Delta s=k\cdot \lambda dann hat man dort konstruktive Interferenz und die Wellen verstärken sich. Man hat dort ein Maximum.
Ist der Gangunterschied \frac{\lambda}{2} und ein Vielfaches von \lambda, also \Delta s=\frac{\lambda}{2}+k\cdot \lambda dann hat man dort destruktive Interferenz und die Wellen löschen sich aus. Man hat dort ein Minimum.


Bleistift 35fach.jpg   Aufgabe 11

Wie erkennt man bei
a) Wasserwellen
b) Lichtwellen
Maximum und Minimum?

[Lösung anzeigen]


Maehnrot.jpg
Merke:

Nach dem Doppelspalt ergeben sich Maxima durch konstruktive Interferenz.
Der Gangunterschied der zwei Wellen ist dort \Delta s = k \cdot \lambda.

Nach dem Doppelspalt ergeben sich Minima durch destruktive Interferenz.
Der Gangunterschied der zwei Wellen ist dort \Delta s=\frac{\lambda}{2}+k\cdot \lambda.


Bleistift 35fach.jpg   Aufgabe 12

Wo findet \Delta s = 0 statt und welche Interferenz hat man dort?

[Lösung anzeigen]

Wasserwellen haben in unseren Versuchen Wellenlängen im Bereich cm. Ansonsten können sie auch auch kleine und sehr viel größere Wellenlängen haben. Der Abstand der Erreger ist auch in diesem Bereich. Bei Lichtwellen sind die Wellenlängen von 400nm bis 700nm, also sehr viel kleiner (1 nm = 10^{-9}m). Der Abstand der beiden Doppelspalte muss auch in diesem Bereich sein. Dagegen ist der Abstand des Schirms, auf dem man das Interferenzbild betrachtet sehr viel größer als die Wellenlänge und der Abstand der Doppelspalte.
Im folgenden Bild ist diese Situation für Lichtwellen dargestellt.

Double-slit schematic.svg

Im Versuch ist d ca. 1m und x sind ein paar mm. Also ist d>>x, d.h. d ist sehr groß gegenüber x. Dann kann man die Kleinwinkelnäherung, die du beim Fadenpendel kennengelernt hast, anwenden. Es ist dann tan(\alpha) \approx sin(\alpha) \approx sin(\alpha ^') und man kommt dann auf die Beziehung für den Gangunterschied \Delta s
\Delta s = a \cdot sin(\alpha ^') \approx a \cdot sin(\alpha) \approx a \cdot tan(\alpha) = a \cdot \frac{x}{d}
Im Versuch kennt man eventuell vom Hersteller den Abstand a der Doppelspalte. Den Abstand d des Schirm zum Doppelspalt kann man messen, ebenso wie den Abstand x der Maxima (helle Punkte) auf dem Schirm. Für das 1. Maximum gilt \Delta s = \lambda. Dann kann man damit die Wellenlänge \lambda bestimmen. Es ist dann  \lambda = \Delta s \approx a \cdot \frac{x}{d}. Oder wenn man die Wellenlänge kennt, kann man z.B. a bestimmen.

In diesem Video

wird erklärt wie man mit Hilfe des Interferenzbildes der Interferenz am Doppelspalt die Wellenlänge eines Laserlichts bestimmen kann.

Nuvola apps edu science.png   Versuch

Schaue dir den Doppelspaltversuch auf dieser Seite an.


Auf dieser Seite sind die Überlegungen zum Doppelspalt nochmals ausführlich dargestellt.


Bleistift 35fach.jpg   Aufgabe 13

1. Bearbeite die Aufgaben: Aufgabe 1, Aufgabe 2, Aufgabe 3, Aufgabe 4 und Aufgabe 5.

2. Bearbeite diese Aufgabe