Ph9 Bewegungen mit konstanter Beschleunigung

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Nuvola apps kig.png   Merke

Die Formeln für eine Bewegung mit konstanter Beschleunigung a sind:

a = konstant

 v = a \cdot t oder a = \frac{v}{t}

s = \frac{1}{2}at^2

, dabei ist v die Geschwindigkeit des Körpers und s der bei der Bewegung zurückgelegte Weg.


Für die Beschleunigung a gilt natürlich auch das Newtonsche Kraftgesetz F = ma, also a=\frac{F}{m}.


Bleistift 35fach.jpg   Aufgabe 1

Buch S. 72 / 2, 4

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 2

Ein ICE fährt mit einer Geschwindigkeit v = 200\frac{km}{h} durch einen Bahnhof.

Danach beschleunigt er mit der Beschleunigung a = 0,1\frac{m}{s^2} wieder auf v_1=250\frac{km}{h}.
Welche Wegstrecke s legt er dabei zurück?
Dieses Problem können wir mit den Bewegungsgleichungen, wie sie oben stehen nicht lösen.
Wir können aber die Zeit \Deltat , die der Beschleunigungsvorgang dauert berechnen. Löst man die Gleichung der Beschleunigung a=\frac{\Delta v}{\Delta t} nach \Deltat auf, so erhält man \Delta t = \frac{\Delta v}{a}=\frac{\frac{50}{3,6}\frac{m}{s}}{0,1\frac{m}{s^2}}=139s.

Nun stellen wir folgende Überlegung an und führen die Durchschnittsgeschwindigkeit ein.

Die Beschleunigung a eines Körpers bewirkt eine Geschwindigkeitsänderung \Delta v in der Beschleunigungszeit \Deltat. Es ist a = \frac{\Delta v}{\Delta t}. Im tv-Diagramm wird eine Bewegung mit konstanter Beschleunigung als Gerade dargestellt.

V D.jpg

Hat zu Beginn der Beschleunigung ein Körper die Geschwindigkeit vstart und am Ende des Beschleunigungsvorgangs vende, dann ist seine Durchschnittsgeschwindigkeit vD der Mittelwert von Start- und Endgeschwindigkeit. Es ist also v_D=\frac{v_{start}+v_{ende}}{2}.

Nuvola apps kig.png   Merke

Die Durchschnittsgeschwindigkeit v_D eines in der Zeit \Deltat konstant beschleunigten Körpers ist v_D=\frac{v_{start}+v_{ende}}{2} .


Gehen wir nun zurück zu unserem ICE. Da wir Anfangs- und Endgeschwindigkeit kennen ist für den Beschleunigungsvorgang des ICE die Durchschnittsgeschwindigkeit des ICE v_D=225\frac{km}{h}. Das ist die konstante Geschwindigkeit, mit der der ICE in der gleichen Zeit dieselbe Strecke zurücklegt. Das ist also eine Bewegung mit konstanter Geschwindigkeit und da können wir die Gleichung s = v_D \Delta t verwenden. Es ist damit s = \frac{225}{3,6}\frac{m}{s}\cdot 139s = 8687,5m \approx 8,7km.
Also legt der ICE während des Beschleunigungsvorgangs knapp 9km zurück.


Bleistift 35fach.jpg   Aufgabe 3

Buch s. 77 / 1

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 4

1. Analysiere die Fahrt eines Sportwagens.
2. Zum Abschluss noch ein Quiz.