M11 Die Kettenregel: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 90: Zeile 90:
 
p) Hier ist <math>z=\frac{1+x^2}{1-x}</math> und <math>f(x) = z^2</math>.<br>
 
p) Hier ist <math>z=\frac{1+x^2}{1-x}</math> und <math>f(x) = z^2</math>.<br>
 
<math>f'(x)=2z\cdot z'=2\cdot \frac{1+x^2}{1-x} \cdot \frac{2x(1-x)-(1+x^2)(-1)}{(1-x)^2}=2\cdot \frac{(1+x^2)(2x-2x^2+1+x^2)}{(1-x)^3}=2\cdot \frac{(1+x^2)(-x^2+2x+1)}{(1-x)^3}</math> und <math>f'(-1)=-1</math>  }}
 
<math>f'(x)=2z\cdot z'=2\cdot \frac{1+x^2}{1-x} \cdot \frac{2x(1-x)-(1+x^2)(-1)}{(1-x)^2}=2\cdot \frac{(1+x^2)(2x-2x^2+1+x^2)}{(1-x)^3}=2\cdot \frac{(1+x^2)(-x^2+2x+1)}{(1-x)^3}</math> und <math>f'(-1)=-1</math>  }}
 +
 +
{{Aufgaben-blau|2|2=Buch S. 131 / 6  }}
 +
 +
{{Lösung versteckt|1=a) Ein Bruch ist 0, wenn der Zähler 0 ist, also für x = -2.<br>
 +
<math>\lim_{x \to 0} \left ( \frac{x+2}{x} \right )^2=\infty</math><br>
 +
<math>\lim_{x \to \pm \infty } \left ( \frac{x+2}{x} \right )^2=1</math>, da der Grad des Zählerpolynoms = Grad des Nennerpolynoms ist und der Quotient der Koeffizienten von x 1 ist. <br>
 +
Asymptoten: senkrechte Asymptote x = 0 bei der Polstelle und waagrechte Asymptote y = 1 für <math>x \to \pm \infty</math>.
 +
 +
b) <math>f'(x) = 2 \cdot  \frac{x+2}{x} \cdot  \frac{x-(x+2)}{x^2}= \frac{-4(x+2)}{x^3}</math><br>
 +
Es ist <math>f'(x)=0</math> wenn x = -2 ist. <br>
 +
Der Zähler 4(x+2) hat bei x = -2 einen VZW -/+, also ist bei x = -2 ein Minimum und G<sub>f</sub> hat bei (-2;0) einen Tiefpunkt.
 +
 +
Für x < -2 ist f'(x) < 0, also G<sub>f</sub> streng monoton fallend,<br>
 +
für -2 < x < 0 ist f'(x) > 0, also G<sub>f</sub> streng monoton steigend, <br>
 +
für 0 < x ist f'(x) < 0, also G<sub>f</sub> streng monoton fallend.
 +
 +
b) Da der Funktionsterm ein Quadrat ist mit Nullstelle ist f(x) ≥ 0. Da D = R\{0}, verläuft G<sub>f</sub> im I. und II. Quadranten.
 +
<center>[[Datei:131-6c.jpg|600px]]</center>
 +
 +
d) Es ist <math> f(2) = 4</math> und <math>f'(2)=-2</math><br>
 +
Also ist y = -2x + t und t erhält man, indem man die Koordinaten von A(2;4) einsetzt. 4 = -4 +  t, also t = 8. <br>
 +
Die Gleichung der Tangente in (2;4) ist y = -2x + 8.
 +
<center>[[Datei:131-6d.jpg|500px]]</center>
 +
Aus der Graphik sieht man, dass g = 6 und h = 4 ist, also <math>A=\frac{1}{2}\cdot 6\cdot 4 = 12</math>.<br>
 +
Die Seitenlängen des Dreiecks sind <math>a = 6, b = 2\sqrt 5, c = 4\sqrt 2</math> und <math>u = 6 + 4 \sqrt 2 + 2 \sqrt 5 \approx 16,1</math><br>
 +
Der kleinste Winkel <math>\eta</math> im Dreieck QER ist bei E. Es ist <math>cos \eta=\frac{4}{4\sqrt 2}=\frac{1}{2} \sqrt 2</math> (im rechtwinkligen Dreieck ABF, wenn F der Höhenfusspunkt ist), also <math>\eta = 45^o</math>.
 +
 +
e)
 +
 +
 +
 +
 +
 +
 +
}}

Version vom 25. Februar 2021, 19:29 Uhr

Die Ableitung einer Funktion f, die die Verkettung der Funktionen u und v ist, erhält man mit der Kettenregel. Es ist f(x)=u \circ v(x)=u(v(x)).
Nach der Definition der Ableitung ist f'(x_0)=\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.
Nun muss man dabei beachten was die Funktionen u und v dabei machen.
Wenn x \to x_0 ist, dann ist v(x) \to v(x_0).
v(x), v(x_0) sind die Argumente, die in u eingesetzt werden. Dabei ist dann, wenn v(x) \to v(x_0) ist , auch u(v(x)) \to u(v(x_0)).

Damit kann man den Differenzenquotienten schreiben:
\frac{f(x)-f(x_0)}{x-x_0}=\frac{u(v(x)-u(v(x_0))}{x-x_0}=\frac{u(v(x)-u(v(x_0))}{v(x)-v(x_0)}\cdot \frac{v(x)-v(x_0)}{x-x_0}.
Beim letzten Term stimmt der Nenner des ersten Bruches mit den Zähler des 2. Bruches überein.
Der erste Bruch \lim_{x \to x_0}\frac{u(v(x)-u(v(x_0))}{v(x)-v(x_0)} bedeutet, dass man u nach v(x) ableitet und der zweite Bruch \lim_{x \to x_0}\frac{v(x)-v(x_0)}{x-x_0} bedeutet, dass man v nach x ableitet.

Also hat man f'(x)=(u\circ v)'(x)=(u(v(x))'=u'(v)\cdot v'(x).

Maehnrot.jpg
Merke:

Kettenregel

f'(x)=(u\circ v)'(x)=(u(v(x))'=u'(v)\cdot v'(x).

Man leitet zuerst die äußere Funktion ab und multipliziert mit der Ableitung der inneren Funktion. Dies nennt man Nachdifferenzieren.


Beispiele:
1.Wir nehmen das Anfangsbeispiel der Seite M11_Verkettung_von_Funktionen
Es ist f(x)= \sqrt {x^2+1}. Dabei ist u(v)=\sqrt v die Funktionsgleichung der äußeren Funktion. Das Argument der Funktion u wurde mit v bezeichnet, damit man sieht, dass die Variable von u nun v (eigentlich v(x)) ist.
Die innere Funktion hat die Funktionsgleichung v(x)=x^2+1.
Für die Ableitung f' der Funktion f differenziert man die äußere Funktion u nach v. Also ist u'(v)=\frac{1}{2\sqrt v} und multipliziert dieses Ergebnis mit der Ableitung der inneren Funktion u nach x, also mit  u'(x) = 2x.
Insgesamt erhält man nun f'(x)=u'(v)\cdot u'(x)=\frac{1}{2\sqrt v} \cdot 2x = \frac{2x}{2\sqrt v}. Nun ersetzt man wieder v durch x^2+1 und kürzt 2, dann ist das Ergebnis

f'(x)=\frac{2x}{2\sqrt {x^2+1}}.

2. f mit f(x)=(5x^2 -3)^{2021} ist die Verkettung der Funktion u mit u(v)=v^{2021} mit der Funktion v mit v(x)=5x^2 -3.
Die Ableitung von u(v)=v^{2021} ist u'(v)=2021v^{2020} (Ableitung der äußeren Funktion)
und die Ableitung von v(x)=5x^2 -3 ist v'(x)=10x (Ableitung der inneren Funktion).
Die Ableitungsfunktion f' erhält man durch f'(x)= u'(v) \cdot v'(x)= 2021v^{2020} \cdot 10x.
Nun ersetzt man weider v durch 5x^2 -3 und hat dann die Ableitung der Funktion f

f'(x) = 2021(5x^2-3)^{2020}\cdot 10x=20210x(5x^2-3)^{2020}.

Und das ging doch deutlich besser als die Potenz (5x^2 -3)^{2021} auszurechnen und ein Polynom vom Grad 2021 abzuleiten!

Man kann die Schreibweise auch verkürzen, indem man die Schreibweise mit "v" weglässt und gleich nur mit den Funktionen von x schreibt. Dabei wird gleich v durch den Funktionsterm v(x) ersetzt.
Das Beispiel 1 ergibt dann f'(x)=\frac{1}{2\sqrt {x^2+1}}\cdot 2x = \frac{2x}{\sqrt {x^2+1}}.
Das Beispiel 2 schreibt sich dann f'(x)=2021(5x^2-3)^{2020} \cdot 10x = 20210x(5x^2-3)^{2020}.


Schauen Sie sich auch die Beispiele 2 bis 4 im Buch auf S. 130 an. Beim Beispiel 3 kann man das Quadrat ausrechnen und ableiten. Man erhält das gleiche Ergebnis, wie wenn man den ursprünglichen Term mit der Kettenregel ableitet.
Das Beispiel 4 verdeutlicht die Auswirkung auf die Definitionsmenge, was sehr selten vorkommt.

Nuvola apps kig.png   Merke

Als sehr praktikabel hat sich dieses Verfahren erwiesen:
Bei der Funktion f ersetzt man die innere Funktion durch z.
Im ersten Beispiel: f(x)= \sqrt {x^2+1} = \sqrt z mit z=x^2+1.
im zweiten Beispiel: f(x)=(5x^2 -3)^{2021}=z^{2021} mit z=5x^2-3.


Die Ableitung f'(x) ergibt sich dann durch f'(x)=f'(z)\cdot z'.


Obwohl in dem Term auf der rechten Seite gar kein x vorkommt, ist es eine Funktion von x, da z eine Funktion von x ist.
Man leitet f zuerst nach z ab und multipliziert dann mit der Ableitung von z nach x. Man spricht "z wird nachdifferenziert".

In unseren Beispielen:
1. f(x)= \sqrt z ergibt f'(x)=\frac{1}{2\sqrt z}\cdot z' und dann ersetzt man für z durch x^2+1 und z' durch die Ableitung 2x, also f'(x)=\frac {1}{2\sqrt {x^2+1}}\cdot 2x.
2. f(x)=z^{2021} ergibt f'(x)=2021z^{2020} \cdot z' = 2021(5x^2-3)^{202}\cdot 10x.


Bleistift 35fach.jpg   Aufgabe 1

Buch S. 131 / 4

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 2

Buch S. 131 / 6

[Lösung anzeigen]