Ph10 Der waagrechte Wurf: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 32: Zeile 32:
 
| {{#ev:youtube |yCYZqRn3AVI|350}} || {{#ev:youtube |kLuncD7E1IU|350}} || {{#ev:youtube |iOXio3fRiMo|350}}
 
| {{#ev:youtube |yCYZqRn3AVI|350}} || {{#ev:youtube |kLuncD7E1IU|350}} || {{#ev:youtube |iOXio3fRiMo|350}}
 
|}
 
|}
 +
 +
 +
{{Merke|1=Die Geschwindigkeit v des Körpers auf einem Punkt der Wurfparabel ist <math>v = \sqrt {v_0^2 + v_y^2}</math>.
 +
 +
Den Auftreffwinkel <math>\alpha</math> erhält man aus <math>tan \alpha = \frac{v_y}{v_0}</math>. }}

Version vom 2. März 2021, 14:12 Uhr

Maehnrot.jpg
Merke:

Der waagrechte Wurf ist eine zweidimensionale Bewegung und setzt sich als Überlagerung

  • einer waagrechten, geradlinig gleichförmigen Bewegung mit der Geschwindigkeit vo und
  • einer senkrechten, gleichmäßig beschleunigten Bewegung mit der Beschleunigung g = 9,8\frac{m}{s^2} nach unten

zusammen.


Bleistift 35fach.jpg   Aufgabe 1

Beschreibe mit einfachen Worten was ein waagrechter Wurf ist.

Bei einem waagrechter Wurf wirft man einen Körper waagrecht mit einer Anfangsgeschwindigkeit los. Er fliegt dann geradlinigen in x-Richtung mit konstanter Geschwindigkeit weiter, gleichzeitig wirkt auf ihn seine Gewichtskraft in y-Richtung. Von dieser wird er mit konstanter Beschleunigung nach unten beschleunigt (freier Fall).


Maehnrot.jpg
Merke:

Bewegungsgleichungen für den waagrechten Wurf

Gesetze-waagrechterWurf.jpg

Eliminiert man die Variable t, dann erhält man für die Bahnkurve die Gleichung einer Parabel. Die Bahnkurve heißt Wurfparabel, ihr Gleichung ist

y = -\frac{1}{2} \frac{g}{v_0^2}x^2

Bei den Gleichungen und der Parabel ist vorausgesetzt, dass der Koordinatenursprung des xy-Koordinatensystems im Abwurfpunkt ist.


Bleistift 35fach.jpg   Aufgabe 2

Wie weit fliegt das Schwein?


Beispielaufgaben:


Nuvola apps kig.png   Merke

Die Geschwindigkeit v des Körpers auf einem Punkt der Wurfparabel ist v = \sqrt {v_0^2 + v_y^2}.

Den Auftreffwinkel \alpha erhält man aus tan \alpha = \frac{v_y}{v_0}.