Wiederholung und Aufgaben zu Schwingungen: Unterschied zwischen den Versionen
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt) | |||
Zeile 68: | Zeile 68: | ||
In den Umkehrpunkten ist die Beschleunigung <math>a=\frac{F}{m}=\frac{D\cdot s}{m}=\frac{25\frac{N}{m} \cdot 0,05m}{0,5kg} =2,5\frac{m}{s^2}</math>}} | In den Umkehrpunkten ist die Beschleunigung <math>a=\frac{F}{m}=\frac{D\cdot s}{m}=\frac{25\frac{N}{m} \cdot 0,05m}{0,5kg} =2,5\frac{m}{s^2}</math>}} | ||
− | S. 92/ | + | S. 92/2 |
{{Lösung versteckt|1=1° entspricht 0,017; 10° entspricht 0,175; 15° entspricht 0,262; 90° entspricht 1,57;<br> | {{Lösung versteckt|1=1° entspricht 0,017; 10° entspricht 0,175; 15° entspricht 0,262; 90° entspricht 1,57;<br> | ||
Zeile 78: | Zeile 78: | ||
<math>s=\frac{1}{6} \pi \cdot 67m=35m</math> }} | <math>s=\frac{1}{6} \pi \cdot 67m=35m</math> }} | ||
− | S. 92/ | + | S. 92/3 |
{{Lösung versteckt|1=a) Es ist im bogenmaß <math>\alpha = \frac{s}{l}</math>, also <math>\alpha_1 = \frac{0,25m}{1m}=0,25</math> entspricht 14,3°, <math>\alpha_2 = \frac{0,5m}{1m}=0,5</math> entspricht 28,6°, <math>\alpha_3 = \frac{0,75m}{1m}=0,75</math> entspricht 43,0°. | {{Lösung versteckt|1=a) Es ist im bogenmaß <math>\alpha = \frac{s}{l}</math>, also <math>\alpha_1 = \frac{0,25m}{1m}=0,25</math> entspricht 14,3°, <math>\alpha_2 = \frac{0,5m}{1m}=0,5</math> entspricht 28,6°, <math>\alpha_3 = \frac{0,75m}{1m}=0,75</math> entspricht 43,0°. | ||
Zeile 101: | Zeile 101: | ||
{{Lösung versteckt|1=10° im Gradmaß entspricht 0,175 im Bogenmaß. Die Amplitude ist dann s<sub>0</sub>=0,35m<br> | {{Lösung versteckt|1=10° im Gradmaß entspricht 0,175 im Bogenmaß. Die Amplitude ist dann s<sub>0</sub>=0,35m<br> | ||
Die Schwingungsdauer ist <math>T=2\pi \sqrt{\frac{2m}{9,8\frac{m}{s^2}}}=2,84s</math> und <math>\omega = \frac{2\pi}{T}=2,2\frac{1}{s}</math>. <br> | Die Schwingungsdauer ist <math>T=2\pi \sqrt{\frac{2m}{9,8\frac{m}{s^2}}}=2,84s</math> und <math>\omega = \frac{2\pi}{T}=2,2\frac{1}{s}</math>. <br> | ||
− | Die Zeit-Ortsfunktions s(t) ist dann <math>s(t)= 0,35m\cdot | + | Die Zeit-Ortsfunktions s(t) ist dann <math>s(t)= 0,35m\cdot cos(2,2\frac{1}{s} \cdot t)</math><br> |
− | <math>v(t)= 0,35m\cdot 2,2\frac{1}{s}\cdot | + | <math>v(t)= -0,35m\cdot 2,2\frac{1}{s}\cdot sin(2,2\frac{1}{s} \cdot t) = -0,77\frac{m}{s}\cdot sin(2,2\frac{1}{s} \cdot t)</math> <br> |
− | <math>a(t)= -0,35m\cdot 2,2^2\frac{1}{s^2} | + | <math>a(t)= -0,35m\cdot 2,2^2\frac{1}{s^2} cos(2,2\frac{1}{s} \cdot t)=-1,7\frac{1}{s^2} cos(2,2\frac{1}{s} \cdot t)</math>}} |
S. 101/5 | S. 101/5 | ||
{{Lösung versteckt|1=Bei großen Auslenkungen ist die rücktreibende Kraft auch sinusförmig (vgl. S. 92 Bild 2 zur Aufgabe 3). Also ist die rücktreibende Kraft kleiner als bei einer direkten Proportionalität. Wenn die Kraft kleiner ist, dann ist auch die Beschleunigung kleiner und das Pendel braucht dann mehr Zeit für eine Schwingung, also nimmt die Schwingungsdauer bei großen Auslenkungen zu.}} | {{Lösung versteckt|1=Bei großen Auslenkungen ist die rücktreibende Kraft auch sinusförmig (vgl. S. 92 Bild 2 zur Aufgabe 3). Also ist die rücktreibende Kraft kleiner als bei einer direkten Proportionalität. Wenn die Kraft kleiner ist, dann ist auch die Beschleunigung kleiner und das Pendel braucht dann mehr Zeit für eine Schwingung, also nimmt die Schwingungsdauer bei großen Auslenkungen zu.}} |
Aktuelle Version vom 16. Februar 2022, 09:31 Uhr
a) Scheitelwert
b) In der Ruhelage wirkt keine resultierende Kraft auf die Kugel.
Die Ruhelage ist die Lage in die der Körper bei einer gedämpften Schwingung zur Ruhe kommt.
c) Aufgrund ihrer Trägheit bewegt sich die Kugel im Verlauf einer Schwingung durch die Ruhelage weiter.
d) Bei einer Federschwingung ist die Beschleunigung
Der Quotient ist konstant, da sich bei der Schwingung D und m nicht ändern. Also ist die Beschleunigung a direkt proportional zur Auslenkung s.
Eine solche Schwingung heißt harmonische Schwingung.
e) , dabei ist s0 die Amplitude der Schwingung und die Winkelgeschwindigkeit und T die Schwingungsdauer. Zum Zeitpunkt t = 0s befindet sich der Pendelkörper im oberen Scheitelpunkt und wird dort losgelassen.
Für s0 = 0,1m und T = 2s ist und
Beachte, dass das Minuszeichen die Richtung angibt!
f) Bei einer harmonischen Schwingung gilt ein lineares Kraftgesetz. Das heißt, dass die rücktreibende Kraft F proportional zur Auslenkung s ist. Es ist
In diesem Video wird alles nochmals erklärt. (Die mathematischen Begriffe wie Ableitung oder Differentialgleichung braucht ihr nicht zu wissen, das kommt erst noch in Mathematik in der Oberstufe.)
Und nun noch ein paar Aufgaben aus dem Buch.
S. 91/3
a) in 1s gibt es 2,5 Schwingungen, also .
Die Frequenz f ist . (Das hat man ja eigentlich schon gerade aus dem Diagramm abgelesen.)
Die 100. Schwingung ist nach t = 100 ·0,4s = 40s erfolgt.
In einer Minute finden Schwingungen statt.
b)
Das Wägestück ist am schnellsten, wenn es sich durch die Ruhelage bewegt.
Man kann es auch berechnen. Es ist und
c)
Es scheint das tx-Diagramm an der x-Achse gespiegelt zu sein. Es ist im ta-Diagramm ein -cos !
d)Das Wägestück hat die betragsmäßig größte Beschleunigungen in den Umkehrpunkten oben und unten.
Unten ist die Beschleunigung am größten, da sie dort positiv ist (sie geht nach oben in positive x-Richtung).
Die beschleunigende Kraft F unten ist F= m·a = 0,1kg ·15 m/s² = 1,5N und oben F = -1,5N.
S. 92/1
F = D·s, also
b) Die Beschleunigung ist beim Durchgang durch die Ruhelage .
S. 92/2
1° entspricht 0,017; 10° entspricht 0,175; 15° entspricht 0,262; 90° entspricht 1,57;
0,1 entspricht 5,7°; 0,5 entspricht 28,6°; entspricht 60°; entspricht 90°.
b) Es ist wobei der Winkel im Bogenmaß sein muss.
1° entspricht 0,0175, also s = 67m ·0,0175 = 1,17m
10° entspricht 0,175, also s = 67m · 0,175 = 11,7m
S. 92/3
a) Es ist im bogenmaß , also entspricht 14,3°, entspricht 28,6°, entspricht 43,0°.
b) Bei s = 0,75m ist der Wert auf der blauen Kurve circa 0,65N und auf der Näherungsgerade circa 0,75N, also ist der Unterschied etwas 0,1N. Damit weicht der Wert um von der Näherungsgeraden ab.
c) 15° entspricht , also s = - 0,262m oder s = 0,262m. Die Kraft, die man zu diesem s-Wert im Diagramm abliest ist F = 0,25N. Wegen erhält mana a = 0,245m/s².
d) liefert eine Starthöhe h = 1m - 1m·cos(15°)=0,034m. Also ist die Lageenergie dort EL=m·g·h=1,02kg · 9,8m/s² ·0,034m = 0,34J.S. 96/1
Bei harmonischen Schwingungen sind im Graphen s(t), v(t) und a(t) je nach Startwert Sinus- oder Kosinuskurven.
S. 101/3
S. 101/4
10° im Gradmaß entspricht 0,175 im Bogenmaß. Die Amplitude ist dann s0=0,35m
Die Schwingungsdauer ist und .
Die Zeit-Ortsfunktions s(t) ist dann
S. 101/5