M9 Anwendungen und Aufgaben zu quadratischen Funktionen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 4: Zeile 4:
 
{{Merke|1=Gemeinsame Punkte von Funktionsgraphen findet man, indem man die Funktionsterme gleichsetzt und die Gleichung nach x auflöst. }}
 
{{Merke|1=Gemeinsame Punkte von Funktionsgraphen findet man, indem man die Funktionsterme gleichsetzt und die Gleichung nach x auflöst. }}
  
{{Aufgaben-blau|1|2=Gemeinsame Punkte einer Parabel mit einer Geraden
+
{{Aufgaben-blau|1|2='''Gemeinsame Punkte einer Parabel mit einer Geraden'''
  
 
Bestimme jeweils die Koordinaten der Punkte R und T, die die Gerade g und die Parabel P gemeinsam haben. Berechne jeweils die Länge der Strecke <math>\overline {RT}</math>.<br>
 
Bestimme jeweils die Koordinaten der Punkte R und T, die die Gerade g und die Parabel P gemeinsam haben. Berechne jeweils die Länge der Strecke <math>\overline {RT}</math>.<br>
Zeile 32: Zeile 32:
 
R(-2;3,5) und T(3;1), <math>\bar {RT}=\sqrt {5^2+2,5^2}=\sqrt{31,25}=\sqrt{\frac{125}{4}}=\frac{5}{2}\sqrt 5 \approx 5,6</math> }}
 
R(-2;3,5) und T(3;1), <math>\bar {RT}=\sqrt {5^2+2,5^2}=\sqrt{31,25}=\sqrt{\frac{125}{4}}=\frac{5}{2}\sqrt 5 \approx 5,6</math> }}
  
{{Aufgaben-blau|2|2=Gemeinsame Punkte zweier Parabeln: Buch S. 100 / 7  }}
+
{{Aufgaben-blau|2|2='''Gemeinsame Punkte zweier Parabeln'''
  
{{Lösung versteckt|1=a)Die beiden Parabeln haben gemeinsame Punkte, da P<sub>2</sub> schlanker als P<sub>1</sub> ist und ihren Scheitel unterhalb vom Scheitel von P<sub>1</sub> hat.<br>
+
Gegeben sind jeweils die Gleichungen der beiden Parabeln <math>P_1</math> und <math>P_2</math>.
 +
 
 +
a) <math>P_1: y = x^2</math> und <math>P_2: y = 2x^2 - 4</math><br>
 +
b) <math>P_1: y = x^2</math> und <math>P_2: y = -x^2 + 4</math><br>
 +
c)  <math>P_1: y = x^2</math> und <math>P_2: y = -(x-2)^2 - 4</math><br>
 +
d) <math>P_1: y = 2(x-1)^2</math> und <math>P_2: y = -3(x+1)^2</math><br>
 +
e) <math>P_1: y = x^2</math> und <math>P_2: y = 2x^2 +1</math><br>
 +
f) <math>P_1: y = -\frac{1}{4}x^2 + 1</math> und <math>P_2: y = x^2 - 4</math><br>
 +
 
 +
Überlege zuerst, welche Paare der Parabeln keine Punkte miteinander haben und begründe deine Überlegung.<br>
 +
Bestimme durch Rechnung die gemeinsamen Punkte jedes der übrigen Parabelpaare. Überprüfe deine Ergebnisse mit dem anschließenden Applet.<br>
 +
Bei den Parabeln, die einander schneiden , sind die Schnittpunkte und die beiden Parabelscheitel jeweils Eckpunkte eines Vierecks. Berechne den Flächeninhalt dieser Vierecke.  }}
 +
 
 +
{{Lösung versteckt|1=a) Die beiden Parabeln haben gemeinsame Punkte, da P<sub>2</sub> schlanker als P<sub>1</sub> ist und ihren Scheitel unterhalb vom Scheitel von P<sub>1</sub> hat.<br>
 
b) P<sub>1</sub> ist nach oben geöffnet und P<sub>2</sub> ist nach unten geöffnet und P<sub>2</sub> hat ihren Scheitel oberhalb des Scheitels von P<sub>1</sub>, also müssen sich die beiden Parabeln schneiden.<br>
 
b) P<sub>1</sub> ist nach oben geöffnet und P<sub>2</sub> ist nach unten geöffnet und P<sub>2</sub> hat ihren Scheitel oberhalb des Scheitels von P<sub>1</sub>, also müssen sich die beiden Parabeln schneiden.<br>
 
c) P<sub>1</sub> hat ihren Scheitel bei (0;0) und ist die Normalparabel, also nach oben geöffnet. P<sub>2</sub> hat ihren Scheitel bei (2;-4) und ist nach unten geöffnet. Die beiden Parabeln können sich nicht schneiden.<br>
 
c) P<sub>1</sub> hat ihren Scheitel bei (0;0) und ist die Normalparabel, also nach oben geöffnet. P<sub>2</sub> hat ihren Scheitel bei (2;-4) und ist nach unten geöffnet. Die beiden Parabeln können sich nicht schneiden.<br>
Zeile 43: Zeile 56:
 
Rechnungen für a, b, f<br>
 
Rechnungen für a, b, f<br>
 
a)<math>x^2 = 2x^2 -4</math> liefert <math>x^2=4</math> mit den zwei Lösungen <math>x_1=-2, x_2=2</math><br>
 
a)<math>x^2 = 2x^2 -4</math> liefert <math>x^2=4</math> mit den zwei Lösungen <math>x_1=-2, x_2=2</math><br>
Die Schnittpunkte R(-2;4) und T(2;4) bilden mit den Scheiteln (0;0) und (0;-4) ein Viereck.
+
Die Schnittpunkte R(-2;4) und T(2;4) bilden mit den Scheiteln (0;0) und (0;-4) ein Viereck mit A = 8.
  
 
b) <math>x^2 = -x^2 + 4</math> liefert <math>x^2 = 2</math> mit den zwei Lösungen <math>x_1=-\sqrt 2, x_2 = \sqrt 2</math>. <br>
 
b) <math>x^2 = -x^2 + 4</math> liefert <math>x^2 = 2</math> mit den zwei Lösungen <math>x_1=-\sqrt 2, x_2 = \sqrt 2</math>. <br>

Version vom 18. Februar 2022, 18:22 Uhr

Gemeinsame Punkte von Funktionsgraphen

Nuvola apps kig.png   Merke

Gemeinsame Punkte von Funktionsgraphen findet man, indem man die Funktionsterme gleichsetzt und die Gleichung nach x auflöst.


Bleistift 35fach.jpg   Aufgabe 1

Gemeinsame Punkte einer Parabel mit einer Geraden

Bestimme jeweils die Koordinaten der Punkte R und T, die die Gerade g und die Parabel P gemeinsam haben. Berechne jeweils die Länge der Strecke \overline {RT}.
a) P: y = x² und g: y = -x + 2
b) P: y = 2x² - 2 und g: y = 6
c) P: y = -x² - 9 und g: y = -2x - 7
d) P: y = 4x² + x und g: y = 1,5x
e) P: y = \frac{1}{3}x^2 + \frac{2}{3} und g: y = 2 - x
f) P: y = \frac{1}{2}(x - 1)^2 - 1 und g: y = -0,5x + 2,5

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 2

Gemeinsame Punkte zweier Parabeln

Gegeben sind jeweils die Gleichungen der beiden Parabeln P_1 und P_2.

a) P_1: y = x^2 und P_2: y = 2x^2 - 4
b) P_1: y = x^2 und P_2: y = -x^2 + 4
c) P_1: y = x^2 und P_2: y = -(x-2)^2 - 4
d) P_1: y = 2(x-1)^2 und P_2: y = -3(x+1)^2
e) P_1: y = x^2 und P_2: y = 2x^2 +1
f) P_1: y = -\frac{1}{4}x^2 + 1 und P_2: y = x^2 - 4

Überlege zuerst, welche Paare der Parabeln keine Punkte miteinander haben und begründe deine Überlegung.
Bestimme durch Rechnung die gemeinsamen Punkte jedes der übrigen Parabelpaare. Überprüfe deine Ergebnisse mit dem anschließenden Applet.
Bei den Parabeln, die einander schneiden , sind die Schnittpunkte und die beiden Parabelscheitel jeweils Eckpunkte eines Vierecks. Berechne den Flächeninhalt dieser Vierecke.

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 3

Gemeinsame Punkte zweier Funktionsgraphen: Buch S. 101 / 8

[Lösung anzeigen]

Textaufgaben

Bleistift 35fach.jpg   Aufgabe 4

Buch S. 104 / 6

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 5

Buch S. 105 / 8

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 6

Nürnberg, Burg, Tiefer Brunnen, 003.jpg Buch S. 107 / IV

[Lösung anzeigen]