Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 28: Zeile 28:
 
O und P liegen jeweils im Abstand 2 in verschiedenen Halbräumen zur Ebene E.<br>
 
O und P liegen jeweils im Abstand 2 in verschiedenen Halbräumen zur Ebene E.<br>
 
[[Datei:153-1d.jpg|Abstand|300px]]
 
[[Datei:153-1d.jpg|Abstand|300px]]
 +
}}
 +
 +
S. 153/2
 +
 +
{{Lösung versteckt|1=(1) Wegen <math> \left( \begin{array}{c} 3 \\\ 2 \\\ 2  \end{array}\right) \circ \left( \begin{array}{c} 2 \\\ -2 \\\ 1  \end{array}\right) = 0</math> steht der Richtungsvektor <math>\vec{u}</math> der Geraden g senkrecht zum Normalenvektor <math>\vec{n}</math> der Ebene E. <math>\vec{u}</math> ist also komplanar zu den Richtungsvektoren der Ebene E. <br>
 +
Die Ebene E hat als HNF <math> \frac{2\cdot x_1-2 \cdot x_2- x_3 +10}{3}=0</math>.
 +
Für den Stützpunkt A(7;-13;-4) der Gerade g berechnet man <math>d(A,E)=\frac{14+26+4+10}{3}=\frac{54}{3}=18</math>, also liegt A nicht in E und g ist echt parallel zu E. Das g echt parallel zu E ist, hat g auch den Abstand 18 zur Ebene E. <br>
 +
Wird g senkrecht auf E projeziert, dann wird in Richtung des Normalenvektors projeziert. Fällt man von A das Lot <math>l: \vec{x} =
 +
\left( \begin{array}{c} 7 \\\ -13 \\\ -4  \end{array}\right) + k \left( \begin{array}{c} 2 \\\ -2 \\\ -1  \end{array}\right)</math>  auf E, dann erhält man den Lotfusspunkt L durch 2(7+2k)-2(-13-2k)-(-4-k)+10=0 und k = -6 und L(-5;-1;2). Damit hat man für g<sup>*</sup> den Stützpunkt. Ihr Richtungsvektor ist derselbe wie bei g, da er "in E liegt" (ist komplanar zu den Richtungsvektoren von E). Die senkrechte Projektion von g in die Ebene E ist dann <math>g^* \vec{x}=\left( \begin{array}{c} -5 \\\ -1 \\\ 2  \end{array}\right) + r \left( \begin{array}{c} 3 \\\ 2 \\\ 3  \end{array}\right)</math> .
 +
 +
(2) Analog geht man hier vor. <br>
 +
<math> \left( \begin{array}{c} -5 \\\ 6 \\\ -1  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 1 \\\ 1  \end{array}\right) = 0</math> .<br>
 +
HNF von E: <math> \frac{x_1+ x_2 + x_3 + 12}{\sqrt{3}}=0</math>.<br>
 +
<math>d(A,E)=\frac{0+7-1+12}{\sqrt{3}}=\frac{18}{3}=18</math><br>
 +
<math>l: \vec{x} =\left( \begin{array}{c} 0 \\\ 7 \\\ -1  \end{array}\right) + k \left( \begin{array}{c} 1 \\\ 1 \\\ 1  \end{array}\right)</math> <br>
 +
k + (7+k) + (-1+k) + 12 = 0 --> k = -6 und L(-6;1;-7)<br>
 +
<math>g^*: \vec{x}=\left( \begin{array}{c} -6 \\\ 1 \\\ -7  \end{array}\right) + r \left( \begin{array}{c} -5 \\\ 6 \\\ -1  \end{array}\right)</math>
 +
 +
 
}}
 
}}

Version vom 24. März 2020, 19:05 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]