Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 45: Zeile 45:
 
k + (7+k) + (-1+k) + 12 = 0 --> k = -6 und L(-6;1;-7)<br>
 
k + (7+k) + (-1+k) + 12 = 0 --> k = -6 und L(-6;1;-7)<br>
 
<math>g^*: \vec{x}=\left( \begin{array}{c} -6 \\\ 1 \\\ -7  \end{array}\right) + r \left( \begin{array}{c} -5 \\\ 6 \\\ -1  \end{array}\right)</math>
 
<math>g^*: \vec{x}=\left( \begin{array}{c} -6 \\\ 1 \\\ -7  \end{array}\right) + r \left( \begin{array}{c} -5 \\\ 6 \\\ -1  \end{array}\right)</math>
 +
}}
  
 +
S. 154/4
 +
 +
{{Lösung versteckt| Die Ebene E hat HNF <math> \frac{16x_1+ 8x_2 + 2x_3}{18}=0</math> .
 +
Für diese Gleichung hat man also einen Normaleneinheitsvektor <math>\vec{n^o}= \frac{1}{18} \left( \begin{array}{c} 16 \\\ 8 \\\ 2  \end{array}\right) = \frac{1}{9} \left( \begin{array}{c} 8 \\\ 4 \\\ 1  \end{array}\right) </math> . <br>
 +
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor <math>\vec{n^o}</math> oder <math>-\vec{n^o}</math> aneinandersetzt.
  
 
}}
 
}}

Version vom 24. März 2020, 19:12 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]

S. 154/4

[Lösung anzeigen]