Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 49: Zeile 49:
 
S. 154/4
 
S. 154/4
  
{{Lösung versteckt| Die Ebene E hat HNF <math> \frac{16x_1+ 8x_2 + 2x_3}{18}=0</math> .
+
{{Lösung versteckt|1=Die Ebene E hat HNF <math> \frac{16x_1+ 8x_2 + 2x_3}{18}=0</math> .
 
Für diese Gleichung hat man also einen Normaleneinheitsvektor <math>\vec{n^o}= \frac{1}{18} \left( \begin{array}{c} 16 \\\ 8 \\\ 2  \end{array}\right) = \frac{1}{9} \left( \begin{array}{c} 8 \\\ 4 \\\ 1  \end{array}\right) </math> . <br>
 
Für diese Gleichung hat man also einen Normaleneinheitsvektor <math>\vec{n^o}= \frac{1}{18} \left( \begin{array}{c} 16 \\\ 8 \\\ 2  \end{array}\right) = \frac{1}{9} \left( \begin{array}{c} 8 \\\ 4 \\\ 1  \end{array}\right) </math> . <br>
 
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor <math>\vec{n^o}</math> oder <math>-\vec{n^o}</math> aneinandersetzt. <br>
 
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor <math>\vec{n^o}</math> oder <math>-\vec{n^o}</math> aneinandersetzt. <br>

Version vom 24. März 2020, 19:22 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]

S. 154/4

[Lösung anzeigen]