Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 53: Zeile 53:
 
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor <math>\vec{n^o}</math> oder <math>-\vec{n^o}</math> aneinandersetzt. <br>
 
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor <math>\vec{n^o}</math> oder <math>-\vec{n^o}</math> aneinandersetzt. <br>
 
Deren HNF sind dann <math> \frac{16x_1+ 8x_2 + 2x_3}{18}+9=0</math>  oder <math> \frac{16x_1+ 8x_2 + 2x_3}{18}-9=0</math> . (Berechnet man den Abstand des Ursprungs O (liegt in E) von diesen Ebenen kommt jeweils 9 heraus!)<br>
 
Deren HNF sind dann <math> \frac{16x_1+ 8x_2 + 2x_3}{18}+9=0</math>  oder <math> \frac{16x_1+ 8x_2 + 2x_3}{18}-9=0</math> . (Berechnet man den Abstand des Ursprungs O (liegt in E) von diesen Ebenen kommt jeweils 9 heraus!)<br>
Schreibt man die Ebenengleichungen nur als Normalenform analog der Ebenengleichung für E, dann lauten sie <math>16x_1+ 8x_2 + 2x_3 + 162 = 0</math> und <math>16x_1+ 8x_2 + 2x_3 - 162 = 0</math> .
+
Schreibt man die Ebenengleichungen nur als Normalenform analog der Ebenengleichung für E, dann lauten sie <math>16x_1+ 8x_2 + 2x_3 + 162 = 0</math> und <math>16x_1+ 8x_2 + 2x_3 - 162 = 0</math> .<br>
 +
[[Datei:154-4.jpg|parallele Ebenen|400px]]<br>
 +
(E1 für +9 und E2 für -9; E1 und E2 liegen in verschiedenen Halbräumen des durch E geteilten Raumes.)
 +
 
 
}}
 
}}

Version vom 24. März 2020, 19:27 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]

S. 154/4

[Lösung anzeigen]